A New Interpretation of the Newton´s Cooling Law: Two Features of Thermons: Their Elastic Volume and Their Angular Momentum
##plugins.themes.bootstrap3.article.main##
The Newton´s cooling law still attracts the attention of scholars in order to describe hidden features of heat particles (thermons) and the mechanism of the radiating heat into the surroundings with a lower temperature. The characteristic cooling constant of this process 1/τπ [min-1] was defined as the experimental parameter describing the contributions of the thermon elastic volume and thermon angular momentum. This experimental parameter τπwas found as the time needed to achieve the temperature Tπ = Tenv +(T0-Tenv)/π during the cooling of the studied object with the starting temperature T0 and the surrounding with temperature Tenv. The studied system was water in spherical flasks with the volumes 2000, 1000, 500, 250, and 100 mL and the starting temperatures 90° C, 80°C, and 70° C. The temperature of the surrounding was 24° C (laboratory temperature) and (4° ± 2°) C (outdoor temperature on March 5 2023 near Prague). There was one critical experimental parameter: where to place the thermometer in the spherical flask: 1. inside to the bottom wall, 2. in the center of spherical flask, 3. at the upper level of the water volume, 4. outside to the bottom wall. For all experimental runs we have found that the temperature Tπ measured at the inside bottom wall of the spherical flasks might be interpreted as the “true” Newtonian temperature while the characteristic cooling constant τπ is very close to the value of the slope in the semi-log graph of those cooling systems. This model was used to interpret the historical experimental data of Newton (1701) and the modern experimental data of Grigull (1984). This model opens a new view on the Carnot engine where the elastic volume of thermons can achieve the efficiency η1 = (THOT – Tπ)/(THOT – TCOLD) = 1-1/π ≈ 0.682. Moreover, the “waste heat” after the Carnot engine can be used in the Seebeck generator to convert the angular momentum of thermons into the electricity (thermoelectric generator) with the efficiency η2 = (Tπ –TCOLD)/(THOT – TCOLD) = 1/π ≈ 0.318. The combined Carnot (1824) – Seebeck (1825) engine can explore all available heat of the of thermons for the temperature difference THOT – TCOLD.
References
-
Anonymous. Scala graduum caloris. Philosophical Transactions of the Royal Society of London. 1701; 22, 824-829. Latin.
Google Scholar
1
-
Richmann GW. Inquisito in legem, secundum quam calor fluidi in vase contenti, certo temporis intervallo, in temperie aëris constanter eadem decresit vel crescit. Novi Commentari Academiae Scientiarum Imperialis Petropolitanane. 1747; 174-197. Latin.
Google Scholar
2
-
Erxleben ICP. Legem vulgarem, secundum quam calor corporum certo temporis intervallo crescere dicitur, ad examen revocat. Novi Commentarii Societatis Regiae Scientiarum Gottingensis. 1777, Gottingae, VIII, 74-95. Latin.
Google Scholar
3
-
Thomson B. (Rumford). An enquiry concerning the nature of heat and the mode of its communication. Philosophical Transactions of the Royal Society. 1804; 94, 77-182.
Google Scholar
4
-
Biot M. Sur la loi de Newton relative à la communication de la chaleur. Bulletin de la Société Philomatique. 1816; 21-24. French.
Google Scholar
5
-
Dulong P, Petit A. Recherches sur la Mesure des Températures et sur les Lois de la communication de la chaleur. Annales de Chimie et de Physique. 1817; VII. 113-154, 225-264, 337-367. French.
Google Scholar
6
-
Stefan J. Űber die Beziehung zwischen der Wärmestrahlung und der Temperatur. Sitzungsberichte der mathematischen-naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften. 1879; 79, 391-428. German.
Google Scholar
7
-
Ruffner JA. Reinterpretation of the genesis on Newton´s “Law of Cooling”. Archive for History of Exact Sciences. 1963; 2(2): 138-152.
Google Scholar
8
-
Molnar GW. Newton´s thermometer: a model for testing Newton´s law of cooling. Physiologist. 1969; 12(1): 9-19.
Google Scholar
9
-
Grigull U. Newton´s temperature scale and the law of cooling. Wärme-Stoffübertragung. 1984; 18, 195-199.
Google Scholar
10
-
O‘Sullivan CT. Newton law of cooling – a critical assesment. American Journal of Physics. 1990; 58(10): 956-960.
Google Scholar
11
-
Cheng KC, Fujii T. Isaac Newton and heat transfer. Heat Transfer Engineering. 1998; 19(4): 9-21.
Google Scholar
12
-
Winterton RHS. Newton´s law of cooling. Contemporary Physics. 1999; 40(3): 205-212.
Google Scholar
13
-
Winterton RHS. Early study of heat transfer: Newton and Fourier. Heat Transfer Engineering. 2001; 22, 3-11.
Google Scholar
14
-
Wisniak J. Heat radiation – from Newton to Stefan. Indian Journal of Chemical Technology. 2002; 9, 545-555.
Google Scholar
15
-
Simms DL. Newton´s contribution to the science of heat. Annals of Science. 2004; 61(1): 33-77.
Google Scholar
16
-
Cheng KC. Some observations on the origins of Newton´s law of cooling and its influences on thermofluid science. Applied Mechanics Reviews. 2009; 62(6): 060803.
Google Scholar
17
-
Barragán D. Entropy production and Newton´s cooling law. Revista Ingenieria e Investigación. 2009; 29(2): 88-93. Spanish.
Google Scholar
18
-
Vollmer M. Newton´s law of cooling revisited. European Journal of Physics. 2009; 30(5): 1063-1084.
Google Scholar
19
-
Bensson U. The history of the cooling law: when search for simplicity can be an obstacle. Science & Education. 2010; 21(8): 1-26.
Google Scholar
20
-
Panković V, Kapor DV. A modification of the Newton´s cooling law and Mpemba effect. Arxiv. 1005. 1013v1. Accessed on April 25, 2023.
Google Scholar
21
-
Davidzon MI. Newton´s law of cooling and its interpretation. International Journal of Heat and Mass Transfer. 2012; 55: 5397-5402.
Google Scholar
22
-
Šesták J. Are nonisothermal kinetics fearing historical Newton´s cooling law, or are just afraid to inbuilt complications due to undesirable thermal inertia? Journal of Thermal Analysis and Calorimetry. 2018; 134, 1385-1393.
Google Scholar
23
-
Šesták J. Do we really know what temperature is: from Newton´s cooling law to an improved understanding of thermal analysis. Journal of Thermal Analysis and Calorimetry. 2020; 142 (217-21): 1-14.
Google Scholar
24
-
Maruyama S, Moriya S. Newton´s law of cooling: follow up and exploration. International Journal of Heat and Mass Transfer. 2021; 164, 120544.
Google Scholar
25
-
Sarafian H. Alternative cooling model vs Newton´s cooling. American Journal of Computational Mathematics. 2021; 11: 64-69.
Google Scholar
26
-
Zhao B. Integrity of Newton´s cooling law based on thermal convection theory of heat transfer and entropy transfer. Scientific Reports. 2022; 12: 16292.
Google Scholar
27
-
Perea Martins JEM. A data acquisition system for water heating and cooling experiments. Physics Education. 2017; 52: 015019.
Google Scholar
28
-
Rodríguez-Acevedo F, Fiore-Álvarez S, Zúñiga.Campos M, Miranda BC, Mata-Segreda JF. Newton´s cooling rate constant of liquids for the relative assessment for heat transport. International Journal for Renewable Energy & Biofuels. 2018; Article ID 996542.
Google Scholar
29
-
Perea Martins JEM. An experimental analysis of the cooling constant computation. Physics Education. 2022; 57: 025001.
Google Scholar
30
-
Callender H. The caloric theory of heat and Carnot´s principle. Proc. Phys. Soc. London. 1911; 23: 153-198.
Google Scholar
31
-
Larmor J. On the nature of heat as directly deductible from the postulate of Carnot. Proc. Roy. Soc. A. 1918; 94: 326-339.
Google Scholar
32
-
Lunn AC. The measurement of heat and the scope of Carnot´s principle. Physical Review. 1919; 14(1): 1-19.
Google Scholar
33
-
Cajori F. On the history of caloric. Isis. 1922; 4(3): 483-492.
Google Scholar
34
-
Brown SC. The caloric theory of heat. American Journal of Physics. 1950; 18(6): 367-373.
Google Scholar
35
-
Kuhn TS. The caloric theory of adiabatic compression. Isis. 1958; 49(2(: 132-140.
Google Scholar
36
-
Kargon R. The decline of the caloric theory of heat: A case study. Centaurus. 1964; 10(1): 35-39.
Google Scholar
37
-
Brush SG. The wave theory of heat: a forgotten stage in the transition from caloric theory to thermodynamics. The British Journal for History of Science. 1970; 5(2): 145-167.
Google Scholar
38
-
Fox R. The caloric theory of gases. Clarendon Press, Oxoford. 1971.
Google Scholar
39
-
Job G. Neudarstellung der Wärmelehre – Die Entropie als Wärme. Akademische Verlagsgesselschaft. Frankfurt, Germany. 1972. German.
Google Scholar
40
-
Morris RJ. Lavoisier and the caloric theory. The British Journal for the History of Science. 1972; 6(1): 1-38.
Google Scholar
41
-
Falk G. Entropy, a resurrection of caloric. A look at the history of thermodynamics. Eur. J. Phys. 1985; 6: 108-115.
Google Scholar
42
-
Chang HS. Preservative realism and its discontents: revisiting caloric. Philosophy of Science. 2003; 70(5): 902-912.
Google Scholar
43
-
Mareš JJ, Hubík P, Šesták J, Špička V, Krištofík J, Stávek J. Phenomenological approach to the caloric theory of heat. Thermochimica Acta. 2008; 474: 1-24.
Google Scholar
44
-
Šesták J, Mareš JJ, Hubík P, Proks I. Contribution by Lazare and Sadi Carnot to the caloric theory of heat and its inspirative role in thermodynamics. Journal of Thermal Analysis and Calorimetry. 2009; 97: 679-683.
Google Scholar
45
-
Fuchs HU. The Dynamics of Heat – A unified approach to thermodynamics and heat transfer. 2nd edition, Springer, New York, USA. 2010.
Google Scholar
46
-
Roller D. CASE 3. The early development of the concepts of temperature and heat. The rise and decline of the caloric theory. Vol. I. Harvard Case Histories in Experimental Science. Harvard University Press, 2013, pp. 117-214.
Google Scholar
47
-
Herrman F, Pohling M. Which physical quantity deserves the name „quantity of heat?” Entropy. 2021; 23, 1078.
Google Scholar
48
-
Feldhoff A. On the thermal capacity of solids. Entropy. 2022; 24: 479.
Google Scholar
49
-
Daub EE. Entropy and dissipation. Historical Studies in the Physical and Biological Sciences. 1970; 2: 321-354.
Google Scholar
50
-
Kragh H, Weininger J. Sooner silence than confusion: the tortuous entry of entropy into chemistry. Historical Studies in the Physical and Biological Sciences. 1996; 27(1): 91-130.
Google Scholar
51
-
Brissaud JB. The meanings of entropy. Entropy. 2005; 7: 68-96.
Google Scholar
52
-
Čápek V, Sheelan DP. Challenges to the second law of thermodynamics – theory and experiment. Springer, Dordrecht, 2005.
Google Scholar
53
-
Leff HS. Entropy, its language, and interpretation. Foundations of Physics. 2007; 37: 1744-1766.
Google Scholar
54
-
Saslow WM. A history of thermodynamics: the missing manual. Entropy. 2020; 22/77.
Google Scholar
55
-
Wu G, Wu Y. A new perspective of how to understand entropy in thermodynamics. Phys. Educ. 2020; 55: 015005.
Google Scholar
56
-
Mitrovic J. Irreversible thermodynamics of James Watt. Advances in Historical Studies. 2022; 11: 119-128.
Google Scholar
57
-
Fuchs HU, D´Anna M, Corni F. Entropy and the experience of heat. Entropy. 2022; 24, 646.
Google Scholar
58
-
Chen M. What is heat? SCIREA Journal of Physics. 2022; 7(6): 244-258.
Google Scholar
59
-
Stávek J. What is hidden in the Planck distribution function and the Wien´s peaks? III. Fission of Solar photons into thermons (“dark heat”). European Journal of Applied Physics.2023; 5(2): 17-25.
Google Scholar
60
-
Stávek J. The mechanical equivalent of heat interpreted as the angular momentum of thermons. European Journal of Applied Physics. 2023; 5(2): 35-39.
Google Scholar
61
-
Comenius IA. Disquisitiones de caloris et frigoris natura cujus cognition vera in reseranda multa naturae arcana clavis erit. (The nature of heat and cold whose true knowledge will be a key to open many secrets of Nature). Editio Amsterodamenius, 1659. In Opera Omnia [12] Jan Amos Komenský, Academia Prague, 1978.
Google Scholar
62
-
Mackenzie RC, Proks I. Comenius and Black: progenitors of thermal analysis. Thermochimica Acta. 1985; 92: 3-14.
Google Scholar
63
-
Šesták J, Mareš JJ. From caloric to stathmograph and polarography. Journal of Thermal Analysis and Calorimetry. 2007; 88: 763-768.
Google Scholar
64
-
Lomonosow M. Meditationes de caloris et frigoris causa Novi Commentari Academiae Scientiarum Imperialis Petropolitanane. 1747; 206-228. Latin.
Google Scholar
65
-
Shiltsev V. Michail Vasil´evich Lomonosow. Arxiv: 1801.00909. https://arxiv.org/ftp/arxiv/papers/1801/1801.00909.pdf.
Google Scholar
66
-
Rankine WJM. On the cetrifugal theory of elasticity, as applied to gases and vapours. Philosophical Magazine. 1851; 2(14): 509-542.
Google Scholar
67
-
Rankine WJM. On the centrifugal theory of elasticity, and its connection with the theory of heat. Earth and Enviromental Science Transactions of the Royal Society of Edinburgh. 1853; 20(3): 425-440.
Google Scholar
68
-
Hutchinson K. Der Ursprung der Entropiefunktion bei Rankine und Clausius. Annals of Science. 1973; 30, 341-364. German.
Google Scholar
69
-
Hutchinson K. WJM Rankine and the rise of thermodynamics. The British Journal for the History of Science. 1981; 14(1): 1-26.
Google Scholar
70
-
Wikipedia. Richmann’s law. Retrieved from: https://en.wikipedia.org/wiki/Richmann%27s_law.
Google Scholar
71
-
Carnot S. Reflexions sur la puissance motrice du feu et sur les machines propres à developper cette puissance. Paris, Bachelier; 1824.
Google Scholar
72
-
Wikipedia. Carnot heat engine. Retrieved from: https://en.wikipedia.org/wiki/Carnot_heat_engine.
Google Scholar
73
-
Seebeck TJ. Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin. 1825; 265-373.
Google Scholar
74
-
Wikipedia. Thermoelectric generator. Retrieved from: https://en.wikipedia.org/wiki/Thermoelectric_generator.
Google Scholar
75
Most read articles by the same author(s)
-
Jiří Stávek,
ChatGPT on the Einstein-Podolsky-Rosen Paradox , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
ChatGPT on the Gravitational Redshift , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
The Newtonian Gravitational Constant G Interpreted as the Gravitational Inertia of Vacuum - G0. How to Arrange Twelve Precise Experimental Determinations of GZ in their Spread 500 ppm? , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
ChatGPT on the Cosmological Redshift and the Hubble Constant , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
Spin Interpreted as the Angular Momentum Curvature, Electron g-factor Interpreted as the Ratio of Toroidal Torsion and Curvature, Unlocking of the Fixed Planck Constant h – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 1 (2021) -
Jiří Stávek,
A New Interpretation of Contributions Presented at the Solvay Conference 1911. Can We Falsify the “Geocentric” Foundations of Quantum Mechanics in the Solar System? , European Journal of Applied Physics: Vol. 3 No. 6 (2021) -
Jiří Stávek,
ChatGPT on the Mathematical Language in Physics , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
The Rydberg Constant Interpreted as the Gaussian Curvature, Gauss-Bohr-de Broglie Model – Two Shadow Projections of the Helix, Unlocking of the Fixed Constant c of the Speed of Light – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
A New Interpretation of the Physical Color Theory Based on the Descartes´ Rotation Energy of Visible, Ultraviolet and Infrared Photons , European Journal of Applied Physics: Vol. 5 No. 5 (2023) -
Jiří Stávek,
How to Relieve the Hubble Constant Tension? (Earth´s Gravitational Redshift + Earth´s Diurnal Aberration) , European Journal of Applied Physics: Vol. 4 No. 2 (2022)