A New Interpretation of Contributions Presented at the Solvay Conference 1911. Can We Falsify the “Geocentric” Foundations of Quantum Mechanics in the Solar System?
##plugins.themes.bootstrap3.article.main##
We have studied the contributions and presentations published in the Proceedings of the Solvay Conference 1911. Based on the lecture of Ernest Solvay on the “gravito-matérialitique” we can distinguish two features of the Earth´s gravitational field – 1. “gravité réelle” described by the Newton´s gravitational law and 2. “gravité potentielle” acting as an agent of the self-organization on quantum particles and creating structures described by the Planck constant hEARTH. From the discussions followed after the presentations of Walther Nernst and Albert Einstein we interpreted the Nernst- Lindemann Formula for the specific heat of solids using the comment of Heike Kamerlingh Onnes (the discoverer of the superconductivity) as two transverse and one longitudinal oscillations of phonon in the surroundings at temperature T. In order to falsify this “geocentric” model of foundations of quantum mechanics in the spirit of Karl Popper we propose to initiate the CURE Project (China – USA – Russia – European Union) (cure = to solve a problem) in order to build quantum laboratories on different orbits around the Earth, on the surface of the Moon and Mars, and in the Lagrange points of the system the Earth – Moon and the Earth – Sun to get new experimental data for the specific heat of solids, the critical temperatures of superconductors, chemical and physical self-organized reactions (Liesegang rings, Belousov- Zhabotinsky waves, chemical clocks, Bose-Einstein condensates, de Broglie waves, etc.). There is space enough for all participants on this CURE Project to collect new valuable data describing this “hidden variable” presented by Ernest Solvay in his forgotten lecture in 1911.
References
-
Solvay E. Sur l´etablissement des principes fondamentaux de la gravito-matérialitique. Imprimente-Lithographie G. Bothy, Bruxelles, 1911, page 65.
Google Scholar
1
-
Langevin P, Broglie M. La théorie de rayonnement et les quanta. Rapports et discussions de la réunion tenue à Bruxelles, du 30 octobre au 3 novembre 1911. Sous les auspices de M.E. Solvay. Paris, Gauthier-Villars, 1912.
Google Scholar
2
-
Eucken A. Die Theorie der Strahlung und der Quanten. Verhandlungen auf einer von E. Solvay einberufenen Zusammenkunft (30. Oktober bis 3. November 1911), mit einem Anhang über die Entwicklung der Quantentheorie vom Herbst 1911 bis Sommer 1913. Knapp, Halle a.S. 1914.
Google Scholar
3
-
Reiche F. Die Quantentheorie. Naturwissenschaften. 1913; 1: 549-552 and 568-571.
Google Scholar
4
-
de Broglie M. Les premiers congrès de physique Solvay et l´orientation de la physique depuis 1911, Cahiers de la collection Sciences d´Aujourd´hui, dirigés par André George, Paris, Albin Michel, 1951.
Google Scholar
5
-
Mehra J. The Solvay conferences on physics: aspects of the development of physics since 1911. D. Reichel, Dordrecht, Holland, 1975.
Google Scholar
6
-
Kormos Barkan D. The witches´sabbath: the first international Solvay congress in physics. Science in Context. 1993; 6: 59-82.
Google Scholar
7
-
Marage P, Wallenborn G. (Eds.), The Solvay Councils and the Birth of Modern Physics. Birkhäuser Verlag, 1999.
Google Scholar
8
-
Galison P. Solvay Redivivus. In: The Quantum Structure of Space and Time, Proceedings of the 23rd Solvay Conference on Physics, Brussels, Belgium, 1-3 December, 2005, Eds. D. Gross, M. Henneaux, and A. Servin, World Scientific, New Jersey, 2007.
Google Scholar
9
-
Straumann N. On the first Solvay Congress in 1911. The European Physical Journal H. 2011; 36: 379-399.
Google Scholar
10
-
Lambert F, Berends |F, Eckert M. The early Solvay councils and the advent of the quantum era. The European Physical Journal Special Topics. 2015; 224: 2011-2021.
Google Scholar
11
-
Lambert FJ, Einstein´s witches´ sabbath in Brussels: The legend and facts. The European Physical Journal Special Topics, 2015; 224: 2023-2040.
Google Scholar
12
-
Foucart S. Au Métropole un . In le Monde, 31 July, 2015.
Google Scholar
13
-
Lambert F, Berends F, Einstein´s witches´ sabbath and the early Solvay councils: the untold story. Kindle Edition, EDP Sciences November 18, 2021.
Google Scholar
14
-
Frank P, Einstein. Sein Leben und seine Zeit. Vieweg, 1949.
Google Scholar
15
-
Illy J, Einstein in Prague. ISIS. 1979; 70: 76-84.
Google Scholar
16
-
Bičák J, Einstein´s Days and Works in Prague. In Physics and Prague, J. Fanta and J. Niederle (Eds.), The Union of Czechoslovak Mathematicians and Physicists, Prague, 1984.
Google Scholar
17
-
Einstein A. The Collected Papers of Albert Einstein. Volume 3: The Swiss Years: Writings, 1909-1911, Eds.: R. Schulmann, A.J. Kox, and J. Renn, 1994.
Google Scholar
18
-
Einstein A. The Collected Papers of Albert Einstein. Volume 4: The Swiss Years: Writings, 1912-1914, Eds.: R. Schulmann, A.J. Kox, and J. Renn, 1996.
Google Scholar
19
-
Einstein A. The Collected Papers of Albert Einstein. Volume 5: The Swiss Years: Correspondence, 1902-1914, Eds.: R. Schulmann, and A.J. Kox, 1994.
Google Scholar
20
-
Gordin MD. Einstein in Bohemia. Princeton University Press, 2020. ISBN-10: 0691177376.
Google Scholar
21
-
Gutfreund H., Otto Stern – with Einstein in Prague and Zürich,” In: Friedrich B., Schmidt-Böcking H. (Eds.) Molecular Beams in Physics and Chemistry, Chapter 6, Springer, 2021.
Google Scholar
22
-
Popper K. Quantum Theory and the Schism in Physics: From the Postscript to the Logic of Scientific Discovery. Routledge, ISBN-10: 0415091128, 1989.
Google Scholar
23
-
Einstein A. Planck´s theory of radiation and the theory of specific heat. Annalen der Physik, 1907; 22:180-190.
Google Scholar
24
-
Einstein A. Elementary observations on thermal molecular motion in solids and note added in proof. Annalen der Physik. 1911; 35:679-694.
Google Scholar
25
-
Nernst W, Lindemann FA. Untersuchung über die spezifische Wärme bei tiefen Temperaturen. V. Sitzungsberichte der Berl. Akad. der Wiss., 1911; 492-501.
Google Scholar
26
-
Nernst W, Lindemann FA. Spezifische Wärme und Quantentheorie. Zeitschrift für Elektrochemie. 1911; 18: 817-827.
Google Scholar
27
-
Kormos Barkan D. Walther Nernst and the Transition to Modern Physical Science. Cambridge University Press, Cambridge, 1999.
Google Scholar
28
-
Kamerlingh Onnes H. “Sur les Résistances Électriques,” pp. 304-312 in Reference [2].
Google Scholar
29
-
Debye P. Zur Theorie der spezifischen Wärme. Annalen der Physik.1912; 39:789-839.
Google Scholar
30
-
Sackur O. Lehrbuch der Thermochemie und Thermodynamics. Berlin, Julius Springer, 1912.
Google Scholar
31
-
Griffiths EH, Griffiths E. The Capacity for Heat of Metals at Low Temperatures. Phil. Trans. Royal Soc. Series A, Containing Papers of a Mathematical or Physical Character. 1914; 214: 319-357.
Google Scholar
32
-
Sieveking H. Moderne Probleme der Physik. Vieweg Verlag, Braunschweig, p. 142, 1914.
Google Scholar
33
-
Richardson OW. The Electron Theory of Matter. Cambridge University Press, Cambridge, 1914.
Google Scholar
34
-
Valentiner S. Anwendung der Quantenhypothese in der kinetischen Theorie der festen Körper und der Gase in elementaler Darsttellung. Vieweg Verlag, Brauschweig, 1921.
Google Scholar
35
-
Reiche F. Die Quantentheorie. Ihr Ursprung und ihre Entwicklung. Springer Verlag, Berlin, 1921.
Google Scholar
36
-
Lindemann F. Guthrie Lecture: Prof. F.A: Lindemann, F.R.S. Nature. May 16, 1936; page 809.
Google Scholar
37
-
Born M, von Kármán T. Zur Theorie der spezifischen Wärme. Physikalische Zeitschrift. 1913; 14:15-19.
Google Scholar
38
-
Nath NN. The dynamical theory of the diamond lattice. Proceedings of the Indian Academy of Sciences, Section A. 1935; 2: 143-152.
Google Scholar
39
-
Klein MJ. Einstein, Specific heats, and the early quantum theory. Science, New Series, 1965; 148: 173-180.
Google Scholar
40
-
Pais A. Einstein and the quantum theory. Reviews of Modern Physics, 1979; 51:863-914.
Google Scholar
41
-
Hulin M. En attendant Debye… Eur. J. Phys., 1980; 1: 222-224.
Google Scholar
42
-
Mehra J, Rechenberg H. The quantum theory of Planck, Einstein, Bohr, and Sommerfeld: Its foundation and the rise of its difficulties 1900-1925. In: The historical development of quantum theory, vol. 1, part 1, Springer Verlag, New York, 1982.
Google Scholar
43
-
Kox AJ. Einstein, specific heats, and residual rays: the history of a retracted paper,” In: No truth except in the details, Eds.: A.J. Kox and D.M. Siegel, Kluwer Academic Publishers, 1995.
Google Scholar
44
-
Pérez E. Einstein i la calor expecífica dels sòlids: arguments per a una teoria quàntica. Revista de Física. 2007; 4: 34-48.
Google Scholar
45
-
Irons FE. New method for reducing the general formula for lattice specific heat to the Einstein and Nernst-Lindemann approximations. Canadian Journal of Physics. 2011; 81: 1015-1036.
Google Scholar
46
-
Tosto S. Reappraising 1907 Einstein´s Model of Specific Heat. Open Journal of Physical Chemistry. 2016; 6: 109-128, Equation 14, Figure 2.
Google Scholar
47
-
Planck M. Ueber irreversible Strahlungsvorgänge. Annalen der Physik. 1900; 17: 273-301.
Google Scholar
48
-
Mills IM., Mohr PJ, Quinn TJ, Taylor BN, and Williams ER. Redefinition of the kilogram: a decision whose time has come. Metrologia. 2005; 42: 71-80.
Google Scholar
49
-
Schlamminger S. Redefining the Kilogram and Other SI Units. Physics World Discovery, 2018; 1-25.
Google Scholar
50
-
Ketterle W, Jamison AO. An atomic physics perspective on the kilogram´s new definitions. Physics Today, 2020; 73: 32-38.
Google Scholar
51
-
Liao SK. et al. Satellite-to-ground quantum key distribution. Nature. 2017; 549: 43-47.
Google Scholar
52
-
Gasbarri G. et al. Testing the foundation of quantum physics in space via Interferometric and non-interferometric experiments with mesoscopic nanoparticles. Communications Physics, 2021; 4: 155-168.
Google Scholar
53
-
Lachmann MD. et al., Ultracold atom interferometry in space. Nature Communications, 2021; 12: 1317-1323.
Google Scholar
54
-
Belenchia A. et al. Quantum physics in space,” Arxiv: 2108.01435v1., Review with 124 pages, 2021.
Google Scholar
55
-
Mikhalev PF, Shemyakin FM. The wave theory of periodic reactions. V. An investigation of periodic reactions by the method of physical-chemical analysis. J. Gen. Chem., 1934; 4:1117.
Google Scholar
56
-
Stávek J, Šípek M. Interpretation of periodic precipitation pattern formation by the concept of quantum mechanics. Crystal Research and Technology, 1995; 30:1033-1049.
Google Scholar
57
-
García-Ruiz JM, Rondón D, Garcia-Romero A, Otálora F. Role of gravity in the formation of Liesegang patterns,” J. Phys. Chem., 1996; 100: 8854-8860.
Google Scholar
58
-
Mareš JJ, Stávek J, Šesták J. Quantum aspects of self-organized periodic chemical reactions. J. Chem. Phys., 2004; 121: 1499-1503.
Google Scholar
59
-
Zhabotinsky AM. Belousov-Zhabotinsky reaction. Scholarpedia, 2007; 2: 1434.
Google Scholar
60
-
Flesselles JM, Belmonte A, Gáspár V. Dispersion relation for waves in the Belousov-Zhabotinsky reaction. J. Chem. Soc., Faraday Trans., 1998; 94 951-855.
Google Scholar
61
-
Klink O, W. Hanke W, Gerberhagen E, de Lima VMF. Influence of heavy water on waves and oscillations in the Belousov-Zhabotinsky reaction. In: Ed. A. Petrin, Wave propagation in materials for modern applications, Ch. 21, pp. 409-418, 2010.
Google Scholar
62
-
Kapral R, Showalter K. Eds. Chemical waves and patterns. Vol. 10, Springer Science & Business Media, 2012.
Google Scholar
63
-
Johnson-Buck A, Shih WM. Single-molecule clocks controlled by serial chemical reactions. Nano Lett., 2017; 17: 7940-7944.
Google Scholar
64
-
Gentili PL, Micheau JC. Light and chemical oscillations: review and perspective. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020; 43:100321.
Google Scholar
65
-
Osypova A, Dübner M, Panzarasa G. Oscillating reactions meet polymers at interfaces. Materials, 2020; 13: 13132957.
Google Scholar
66
Most read articles by the same author(s)
-
Jiří Stávek,
ChatGPT on the Einstein-Podolsky-Rosen Paradox , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
ChatGPT on the Gravitational Redshift , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
The Newtonian Gravitational Constant G Interpreted as the Gravitational Inertia of Vacuum - G0. How to Arrange Twelve Precise Experimental Determinations of GZ in their Spread 500 ppm? , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
ChatGPT on the Cosmological Redshift and the Hubble Constant , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
Spin Interpreted as the Angular Momentum Curvature, Electron g-factor Interpreted as the Ratio of Toroidal Torsion and Curvature, Unlocking of the Fixed Planck Constant h – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 1 (2021) -
Jiří Stávek,
ChatGPT on the Mathematical Language in Physics , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
The Rydberg Constant Interpreted as the Gaussian Curvature, Gauss-Bohr-de Broglie Model – Two Shadow Projections of the Helix, Unlocking of the Fixed Constant c of the Speed of Light – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
A New Interpretation of the Physical Color Theory Based on the Descartes´ Rotation Energy of Visible, Ultraviolet and Infrared Photons , European Journal of Applied Physics: Vol. 5 No. 5 (2023) -
Jiří Stávek,
How to Relieve the Hubble Constant Tension? (Earth´s Gravitational Redshift + Earth´s Diurnal Aberration) , European Journal of Applied Physics: Vol. 4 No. 2 (2022) -
Jiří Stávek,
What is Hidden in the Planck Distribution Function and the Wien´s Peaks? III. Fission of Solar Photons into Thermons (“Dark Heat”) , European Journal of Applied Physics: Vol. 5 No. 2 (2023)