The Rydberg Constant Interpreted as the Gaussian Curvature, Gauss-Bohr-de Broglie Model – Two Shadow Projections of the Helix, Unlocking of the Fixed Constant c of the Speed of Light – New Tests for Old Physics
##plugins.themes.bootstrap3.article.main##
We have newly interpreted the Rydberg constant R∞ as the Gaussian curvature – the ratio of the 4π electron spin rotation to the area on the Gauss – Bohr sphere travelled by that electron. Rydberg constant for hydrogen RH was newly derived and can be experimentally tested and compared with the value RH derived from the reduced mass. The de Broglie electron on the helical path embedded on the Gauss – Bohr sphere was projected as two shadows: the real shadow Re [cos(t)] and the imaginary shadow Im [i sin(t)]. This model differs from the Schrödinger famous quantum wave description in the physical interpretation. The wave amplitude is here interpreted as the distance of the shadow from the Gauss – Bohr sphere. Moreover, we have newly inserted into the wave equation curvature and torsion of that de Broglie helix. One very interesting result of this model is the estimation of the constant c of the speed of light with three additional significant figures. We have divided the very precise CODATA 2018 value for R∞ expressed in frequency and the CODATA 1986 value for R∞ expressed in wavenumber unit. Based on these precise spectroscopic data we might increase the accuracy of the constant c of the speed of light to twelve significant figures.
References
-
N. Bohr, “On the constitution of atoms and molecules,” Phil. Mag., vol. 26, pp. 1-24, (1913).
Google Scholar
1
-
T. W Hänsch, “Precision Spectroscopy of Atomic Hydrogen,” AIP Conference Proceedings, vol. 323, 63, (1994).
Google Scholar
2
-
S. G. Karshenboim, F. Bassani, F. S. Pavone, M. Inguscio, and T. W. Hänsch, “The Hydrogen Atom: Precision Physics of Simple Atomic Systems,” Lecture Notes in Physics, vol. 570, (2001).
Google Scholar
3
-
T. W. Hänsch et al. “Precision spectroscopy of hydrogen and femtosecond laser frequency combs,” Phil. Trans. R. Soc. A, vol. 363, pp. 2155-2163, (2005).
Google Scholar
4
-
F. Biraben, “Spectroscopy of atomic hydrogen. How is the Rydberg constant determined?” The European Physical Journal, vol. 172, pp. 109, (2009).
Google Scholar
5
-
A. Beyer at al., “Precision spectroscopy of atomic hydrogen,” Journal of Physics: Conference Series, vol. 467, 01203, (2013).
Google Scholar
6
-
A. Beyer et al. “Precision spectroscopy of 2S- nP transitions in atomic hydrogen for a new determination of the Rydberg constant and the proton charge radius,” Physica Scripta, vol. 165, 014030, (2015).
Google Scholar
7
-
Z. X. Zhong, X. Tong, Z. C. Yan, and T.Y. Shi, “High precision spectroscopy of hydrogen molecular ions,” Chinese Physics B, vol. 24, 053102, (2015).
Google Scholar
8
-
W. Ubachs, J. C. J. Koelemeij, K. S. E. Eikima, and E. J. Salumbides, “Physics beyond the standard model from hydrogen spectroscopy,” Journal of Molecular Spectroscopy, vol. 320, pp. 1-12, (2016).
Google Scholar
9
-
A. Beyer et al. “The Rydberg constant and proton size from atomic hydrogen,” Science, vol. 358, pp. 79-85, (2017).
Google Scholar
10
-
A. Sommerfeld, “Zur Quantentheorie der Spektrallinien,” Annalen der Physik, vol. 356, pp. 1-94, (1916).
Google Scholar
11
-
A. Einstein, “Zur Quantenansatz von Sommerfeld und Epstein,” Verh. Deutsch. Phys. Ges., vol. 19, pp. 82-92, (1917).
Google Scholar
12
-
N. Bohr, “Linienspektren und Atombau,” Annalen der Physik, vol. 71, pp. 228-288, ((1923).
Google Scholar
13
-
L. de Broglie, “Recherches sur la téorie des quanta,” PhD. Thesis, Paris, (1924).
Google Scholar
14
-
D. Ter Haar, “The Old Quantum Theory,” Elsevier, ISBN 978-0-08-012102-4, (1967).
Google Scholar
15
-
J. Heilbronn and T. Kuhn, “The Genesis of the Bohr Atom,” Historical Studies in the Physical Sciences, vol. 1, pp. 211-290, (1969).
Google Scholar
16
-
M. Bucher, “Rise and premature fall of the old quantum theory,” Arxiv, 0802.136v1, (2008).
Google Scholar
17
-
P. Vickers, “Historical magic in old quantum theory?” European Journal for Philosophy of Science,” vol. 2, pp. 1-19, (2012).
Google Scholar
18
-
H. Kragh, “Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structures,” Oxford, Oxford University Press, (2012).
Google Scholar
19
-
F. Aaserud and H. Kragh, “One Hundred Years of the Bohr atom,” Proceedings from a Conference, Scientia Danica, Series M, Mathematica et physica, vol. 1, (2013).
Google Scholar
20
-
K. W. Ford, “Niels Bohr´s first 1913 Paper: still relevant, still exciting, still puzzling,” The Physics Teacher, vol. 5, 500-502, (2018).
Google Scholar
21
-
W. Heisenberg, “Über quantentheoretische Umdeutung kinematicher und mechanischer Beziehungen,” Zeitschrift für Physik, vol. 33, pp. 879-893, (1925).
Google Scholar
22
-
E. Schrödinger, “An undulatory theory of the mechanics of atoms and molecules,” Physical Review, vol. 28, pp. 1049-1070, (1926).
Google Scholar
23
-
S. R. Amin, C. D. Caldwell, and W. Lichten “Crossed-beam spectroscopy of hydrogen: a new value for the Rydberg constant”, Phys. Rev. Lett., vol. 47, 1234, (1981).
Google Scholar
24
-
T. W. Hänsch, “Spectroscopy, quantum electrodynamics, and elementary particles – Precision Laser Spectroscopy”, In Precision Measurement and Fundamental Constants II, Eds. B. N. Taylor, and W. D. Phillips, National Bureau of Standards, pp. 111–115, (1984).
Google Scholar
25
-
S. R. Amin, C. D. Caldwell, and W. Lichten, “Atomic beam, linear, single-photon measurement of the Rydberg constant”, In Precision Measurement and Fundamental Constants II, Eds. B. N. Taylor, and W. D. Phillips, National Bureau of Standards, pp. 117–122, (1984).
Google Scholar
26
-
P. Zhao, W. Lichten, H. P. Layer, and J. C. Bergquist, “Remeasurement of the Rydberg constant”, Physical Review A, vol. 34, 1511, (1987).
Google Scholar
27
-
E. R. Cohen, and B. N. Taylor, “The 1986 adjustment of the fundamental physical constants”, Reviews of Modern Physics, vol 59, pp. 1121–1148, (1987).
Google Scholar
28
-
B. N. Taylor, and E. R. Cohen, “Recommended values of the fundamental physical constants: a status report”, J. Res. Natl. Inst. Stand. Technol., vol. 95, pp. 497–523, (1990).
Google Scholar
29
-
S. G. Karshenboim, F. Bassani, F. S. Pavone, M. Inguscio, and T. W. Hänsch, “The Hydrogen Atom: Precision Physics of Simple Atomic Systems,” Lecture Notes in Physics, vol. 570, p. 36, Fig. 14, (2001).
Google Scholar
30
-
S. G. Karshenboim, “Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants,” Physics Reports, vol 422, pp. 1–63, (2005).
Google Scholar
31
-
S. G. Karshenboim, “Fundamental physical constants: looking from different angles,” Arxiv: 0506.173v2. (2005).
Google Scholar
32
-
P. J. Mohr, D. B. Newell, B. N. Taylor, and E. Tiesinga, “Data and analysis for the CODATA 2017 special fundamental constants adjustment,” Metrologia, vol. 55, pp. 125–146, (2018).
Google Scholar
33
-
K. M. Evenson et al., “Speed of light from direct frequency and wavelength. Measurements of the methane-stabilized laser,” Phys. Rev. Lett. Vol. 29, p. 1346, 1972.
Google Scholar
34
-
T. G. Blaney et al., “Measurement of the speed of light. II. Wavelength measurements and conclusion,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 355, pp. 89-114, 1977.
Google Scholar
35
-
P. T. Woods, K. C. Shotton, and W. R. C. Rowley, “Frequency determination of visible laser light by interferometric comparison with upconverted CO2 laser radiation,” Applied Optics, vol. 17, pp. 1048-1054, 1978.
Google Scholar
36
-
J. Stávek, “Spin interpreted as the angular momentum curvature, electron g-factor interpreted as the ratio of toroidal torsion and curvature, unlocking of the fixed Planck constant h – new tests for old physics,” European Journal of Applied Physics, vol. 3, pp. 61-66, Issue 1, (2021).
Google Scholar
37
-
J. J. Mareš, P. Hubík, V. Špička, J. Stávek, J. Šesták, and J. Krištofík, “Shadows over the speed of light,” Physica Scripta, vol. 2012, 014080, 2012.
Google Scholar
38
Most read articles by the same author(s)
-
Jiří Stávek,
ChatGPT on the Einstein-Podolsky-Rosen Paradox , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
ChatGPT on the Gravitational Redshift , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jirí Stávek,
The Rutherford-Harkins-Landau-Chadwick Key–I. Introduction to Nuclear Chemistry , European Journal of Applied Physics: Vol. 7 No. 1 (2025) -
Jiří Stávek,
ChatGPT on the Cosmological Redshift and the Hubble Constant , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
The Newtonian Gravitational Constant G Interpreted as the Gravitational Inertia of Vacuum - G0. How to Arrange Twelve Precise Experimental Determinations of GZ in their Spread 500 ppm? , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
ChatGPT on the Mathematical Language in Physics , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
Spin Interpreted as the Angular Momentum Curvature, Electron g-factor Interpreted as the Ratio of Toroidal Torsion and Curvature, Unlocking of the Fixed Planck Constant h – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 1 (2021) -
Jiří Stávek,
A New Interpretation of Contributions Presented at the Solvay Conference 1911. Can We Falsify the “Geocentric” Foundations of Quantum Mechanics in the Solar System? , European Journal of Applied Physics: Vol. 3 No. 6 (2021) -
Jiří Stávek,
A New Interpretation of the Physical Color Theory Based on the Descartes´ Rotation Energy of Visible, Ultraviolet and Infrared Photons , European Journal of Applied Physics: Vol. 5 No. 5 (2023) -
Jiří Stávek,
How to Relieve the Hubble Constant Tension? (Earth´s Gravitational Redshift + Earth´s Diurnal Aberration) , European Journal of Applied Physics: Vol. 4 No. 2 (2022)