The Mechanical Equivalent of Heat Interpreted as the Angular Momentum of Thermons
##plugins.themes.bootstrap3.article.main##
There were derived many forms of theories of heat during the past three hundred years. At its origins, thermodynamics was the study of heat and engines and therefore, we should be connected to these roots. In this model we present thermons as carriers of heat from hot bodies to cold bodies. The flow of heat is modelled as the transfer of angular momentum of these thermons in the direction from the higher angular momentum to the lower angular momentum of thermons. The mechanical equivalent of heat J is defined as the ratio of the angular momentum of thermons to the temperature of the surrounding. This model newly defines the quantity of heat – entropy S – as the ratio of the angular momentum of thermons to the temperature of the surrounding. This model can open a new window to the microworld where quantum particles transfer their heat content in one direction. However, this direction can be changed via the work done on these quantum particles and to reverse the flow of the angular momentum from lower angular momentum to higher angular momentum of those quantum particles. It will be shown that these very well-known formulae of S to all scholars might still keep some hidden surprising properties.
References
-
Black J. Lectures on the Elements of Chemistry. J. Robinson Ed. Vol I, Longman and Rees, London and William Creech, Edinburgh, 1803.
Google Scholar
1
-
Fourier JBJ. Théorie analytique de la chaleur. Paris, 1822. French.
Google Scholar
2
-
Carnot S. Réflexions sur la Puissance Motrice du Feu et Sur es Machines Propres à Développer Cette Puissance. Chez Bachelier, Paris, France, 1824. French.
Google Scholar
3
-
Helmholtz HV. Űber die Erhaltung der Kraft, Vortrag vor der Physikalischen Gesselschaft, Berlin, Reimer, 1847. https://edoc.hu-berlin.de/bitstream/handle/18452/1030/h260_helmholtz_1847.pdf?sequence=1&isAllowed=y (Accessed January 31, 2023). German.
Google Scholar
4
-
Clausius R. Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Ann.Phys.Chem. 1865; 201, 390. German.
Google Scholar
5
-
Maxwell JC. Theory of Heat. Diamond Books. 2020.
Google Scholar
6
-
Mach E. Die Prinzipien der Wàrmelehre: Historisch kritisch entwickelt. 2nd Ed. Verlag von Johannes Ambrosius Barth, Lepizig, 1896. German.
Google Scholar
7
-
Planck M. Vorlesungen über Thermodynamik, 11th Ed., Walter de Gruyter & Co., Berlin, 1964, German.
Google Scholar
8
-
Brush SG. The wave theory of heat: a forgotten stage in the transition from the caloric theory to thermodynamics. The British Journal for the History of Science. 1970; 5(2): 145-167.
Google Scholar
9
-
Brush SG. Kind of motion we call heat. Vol. I and Vol. II, North Holand, Amsterdam, 1976.
Google Scholar
10
-
Brush SG. Kinetic theory: the nature of gases and of heat. Vol. 1, Elsevier, 2013
Google Scholar
11
-
Hentschel K. Unsichtbares Licht? Dunkle Wärme? Chemische Strahlen? Eine wissenschaftshistorische und -theoretische Analyse von Argumenten für das Klassifizieren von Strahlungsorten 1650-1925 mit Schwerpunkt auf den Jahren 1770-1900. GNT-Verlag GmbH, 2007. ISBN-10: 3928186841. German.
Google Scholar
12
-
Callender H. The caloric theory of heat and Carnot´s principle. Proc. Phys. Soc. London. 1911; 23: 153-198.
Google Scholar
13
-
Larmor J. On the nature of heat as directly deductible from the postulate of Carnot. Proc. Roy. Soc. A. 1918; 94: 326-339.
Google Scholar
14
-
Lunn AC. The measurement of heat and the scope of Carnot´s principle. Physical Review. 1919; 14(1): 1-19.
Google Scholar
15
-
Cajori F. On the history of caloric. Isis. 1922; 4(3): 483-492.
Google Scholar
16
-
Brown SC. The caloric theory of heat. American Journal of Physics. 1950; 18(6): 367-373.
Google Scholar
17
-
Kuhn TS. The caloric theory of adiabatic compression. Isis. 1958; 49(2(: 132-140.
Google Scholar
18
-
Kargon R. The decline of the caloric theory of heat: A case study. Centaurus. 1964; 10(1): 35-39.
Google Scholar
19
-
Brush SG. The wave theory of heat: a forgotten stage in the transition from caloric theory to thermodynamics. The British Journal for History of Science. 1970; 5(2): 145-167.
Google Scholar
20
-
Fox R. The caloric theory of gases. Clarendon Press, Oxoford. 1971.
Google Scholar
21
-
Job G. Neudarstellung der Wärmelehre – Die Entropie als Wärme. Akademische Verlagsgesselschaft. Frankfurt, Germany. 1972. German.
Google Scholar
22
-
Morris RJ. Lavoisier and the caloric theory. The British Journal for the History of Science. 1972; 6(1): 1-38.
Google Scholar
23
-
Falk G. Entropy, a resurrection of caloric. A look at the history of thermodynamics. Eur. J. Phys. 1985; 6: 108-115.
Google Scholar
24
-
Chang HS. Preservative realism and its discontents: revisiting caloric. Philosophy of Science. 2003; 70(5): 902-912.
Google Scholar
25
-
Mareš JJ, Hubík P, Šesták J, Špička V, Krištofík J, Stávek J. Phenomenological approach to the caloric theory of heat. Thermochimica Acta. 2008; 474: 1-24.
Google Scholar
26
-
Šesták J, Mareš JJ, Hubík P, Proks I. Contribution by Lazare and Sadi Carnot to the caloric theory of heat and its inspirative role in thermodynamics. Journal of Thermal Analysis and Calorimetry. 2009; 97: 679-683.
Google Scholar
27
-
Fuchs HU. The Dynamics of Heat – A unified approach to thermodynamics and heat transfer. 2nd edition, Springer, New York, USA. 2010.
Google Scholar
28
-
Roller D. CASE 3. The early development of the concepts of temperature and heat. The rise and decline of the caloric theory. Vol. I. Harvard Case Histories in Experimental Science. Harvard University Press, 2013, pp. 117-214.
Google Scholar
29
-
Herrman F, Pohling M. Which physical quantity deserves the name „quantity of heat?” Entropy. 2021; 23, 1078.
Google Scholar
30
-
Feldhoff A. On the thermal capacity of solids. Entropy. 2022; 24: 479.
Google Scholar
31
-
Daub EE. Entropy and dissipation. Historical Studies in the Physical and Biological Sciences. 1970; 2: 321-354.
Google Scholar
32
-
Kragh H, Weininger J. Sooner silence than confusion: the tortuous entry of entropy into chemistry. Historical Studies in the Physical and Biological Sciences. 1996; 27(1): 91-130.
Google Scholar
33
-
Brissaud JB. The meanings of entropy. Entropy. 2005; 7: 68-96.
Google Scholar
34
-
Čápek V, Sheelan DP. Challenges to the second law of thermodynamics – theory and experiment. Springer, Dordrecht, 2005.
Google Scholar
35
-
Leff HS. Entropy, its language, and interpretation. Foundations of Physics. 2007; 37: 1744-1766.
Google Scholar
36
-
Saslow WM. A history of thermodynamics: the missing manual. Entropy. 2020; 22/77.
Google Scholar
37
-
Wu G, Wu Y. A new perspective of how to understand entropy in thermodynamics. Phys. Educ. 2020; 55: 015005.
Google Scholar
38
-
Mitrovic J. Irreversible thermodynamics of James Watt. Advances in Historical Studies. 2022; 11: 119-128.
Google Scholar
39
-
Fuchs HU, D´Anna M, Corni F. Entropy and the experience of heat. Entropy. 2022; 24, 646.
Google Scholar
40
-
Chen M. What is heat? SCIREA Journal of Physics. 2022; 7(6): 244-258.
Google Scholar
41
-
Thomson B. (Count Rumford). An experimental enquiry concerning the source of the heat which is excited by friction. 1798; Philosophical Transactions of the Royal Society, p.102.
Google Scholar
42
-
Joule JP. On the mechanical equivalent of heat. Philosophical Transactions of the Royal Society of London. 1850; 140: 61-82.
Google Scholar
43
-
Stávek J. What is hidden in the Planck distribution function and the Wien´s peaks? III. Fission of Solar photons into thermons (“dark heat”). European Journal of Applied Physics. 2023; 5(2): 17-25.
Google Scholar
44
-
Young J. Heat, work and subtle fluids: a commentary of Joule (1850) ´On the mechanical equivalent of heat´. Philosophical Transactions of the Royal Society A. 2015; 373: 2014.0348.
Google Scholar
45
-
Heering P. Die Bestimmung des mechanischen Wärmeäquivalents durch James Prescott Joule. Kanonische Experimente der Physik. 2022; pp. 139-152, ebook: ISBN: 978-3-662-64646-5.
Google Scholar
46
-
Greenslade T. Nineteenth-century measurements of the mechanical equivalent of heat. The Physics Teacher, 2002; 40: 243-248.
Google Scholar
47
-
Kipnis N. Thermodynamics and mechanical equivalent of heat. Science & Education. 2014; 23: 2007-2044.
Google Scholar
48
-
Wikipedia. Angular momentum. [Internet]. Retrieved from: https://en.wikipedia.org/wiki/Angular_momentum (accessed on February 05, 2023).
Google Scholar
49
-
Rankine WJM. On the cetrifugal theory of elasticity, as applied to gases and vapours. Philosophical Magazine, 1851; 2(14): 509-542.
Google Scholar
50
-
Rankine WJM: On the centrifugal theory of elasticity, and its connection with the theory of heat. Earth and Enviromental Science Transactions of the Royal Society of Edinburgh, 1853; 20(3): 425-440.
Google Scholar
51
-
Hutchinson K. Der Ursprung der Entropiefunktion bei Rankine und Clausius. Annals of Science. 1973; 30, 341-364. German.
Google Scholar
52
-
Hutchinson K. WJM Rankine and the rise of thermodynamics. The British Journal for the History of Science, 1981; 14(1): 1-26.
Google Scholar
53
-
Jaynes ET. The evolution of Carnot´s principle. In Erickson GJ, Smith CR, Eds. Maximum-entropy and Bayesian Methods in Science and Engineering. Fundamental Theories of Physics. Springer, Dordrecht; 1988; Vol.31-32.
Google Scholar
54
Most read articles by the same author(s)
-
Jiří Stávek,
ChatGPT on the Einstein-Podolsky-Rosen Paradox , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
ChatGPT on the Gravitational Redshift , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
The Newtonian Gravitational Constant G Interpreted as the Gravitational Inertia of Vacuum - G0. How to Arrange Twelve Precise Experimental Determinations of GZ in their Spread 500 ppm? , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
ChatGPT on the Cosmological Redshift and the Hubble Constant , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
Spin Interpreted as the Angular Momentum Curvature, Electron g-factor Interpreted as the Ratio of Toroidal Torsion and Curvature, Unlocking of the Fixed Planck Constant h – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 1 (2021) -
Jiří Stávek,
A New Interpretation of Contributions Presented at the Solvay Conference 1911. Can We Falsify the “Geocentric” Foundations of Quantum Mechanics in the Solar System? , European Journal of Applied Physics: Vol. 3 No. 6 (2021) -
Jiří Stávek,
ChatGPT on the Mathematical Language in Physics , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
The Rydberg Constant Interpreted as the Gaussian Curvature, Gauss-Bohr-de Broglie Model – Two Shadow Projections of the Helix, Unlocking of the Fixed Constant c of the Speed of Light – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
A New Interpretation of the Physical Color Theory Based on the Descartes´ Rotation Energy of Visible, Ultraviolet and Infrared Photons , European Journal of Applied Physics: Vol. 5 No. 5 (2023) -
Jiří Stávek,
How to Relieve the Hubble Constant Tension? (Earth´s Gravitational Redshift + Earth´s Diurnal Aberration) , European Journal of Applied Physics: Vol. 4 No. 2 (2022)