##plugins.themes.bootstrap3.article.main##

We have newly interpreted the Newtonian gravitational constant G as the gravitational inertia of vacuum G0. The source mass inserted into vacuum decreases this value G0 to GZ on the dependence of the atomic number Z of atoms in the source mass. This is the mechanism for the attraction of test masses through vacuum – the test mass follows the decrease of the gravitational inertia of vacuum towards the source mass. We have extracted the relationship GZ = G0 (1 – k Z) where k is the experimental constant from ten actual precise experimental determinations of GZ. This model was tested on two precise experimental values of GZ determined for GEARTH, and GBRASS. This model enables to predict values GZ for atoms, molecules and compositions of the studied source masses and to realize experimental verification with the existing experimental technology. The experimental GZ values are thus arranged into a system and the spread in these data is explained as the influence of atoms of the source masses on their surrounding via the decrease of the gravitational inertia of vacuum. We might achieve the accuracy of experimental values GZ with six significant figures for all configurations of source and test masses.

References

  1. M. U. Sagitov, “Current status of determinations of the gravitational constant and the mass of the Earth,” Soviet Astronomy, vol. 13, pp. 712–718, (1970).
     Google Scholar
  2. G. T. Gillies, “The Newtonian gravitational constant: an index of measurement,” Bureau International des Poids et Mesures, France, 1982.
     Google Scholar
  3. G. T. Gillies, “The Newtonian gravitational constant: recent measurements and related studies,” Rep. Prog. Phys., vol. 60, pp. 151–225, (1997).
     Google Scholar
  4. J. Luo, and Z. K. Hu, “Status of measurement of the Newtonian gravitational constant,” Class. Quantum Grav., vol. 17, pp. 2351–2363, (2000).
     Google Scholar
  5. V. K. Milyukov, J. Luo, Ch. Tao, and A. P. Mironov, “Status of the experiments on measurement of the Newtonian gravitational constant,” Gravitation and Cosmology, vol. 14, pp. 368–375, (2008).
     Google Scholar
  6. V. Milyukov, and S. H. Fan, “The Newtonian gravitational constant: modern status of measurement and the new CODATA value,” Gravitation and Cosmology, vol. 18, pp. 216–224, (2012).
     Google Scholar
  7. T. Quinn, and C. Speake, “The Newtonian constant of gravitation, a constant too difficult to measure?” 13 contributions to a Theo Murphy Meeting Issue, Phil. Trans. R Soc., vol. A 372, (2014).
     Google Scholar
  8. S. Schlamminger, J. H. Gundlach, and R. D. Newman, “Recent measurements of the gravitational constant as a function of time,” Phys. Rev. D, vol. 91, 121101(R), (2015).
     Google Scholar
  9. C. Rothleitner, and S. Schlamminger, “Invited review article: measurement of the Newtonian constant of gravitation, G,” Rev. Sci. Instrum., vol. 88, pp. 11110-1–111101-27, (2017).
     Google Scholar
  10. J. Wu et al., “Progress in precise measurements of the gravitational constant,” Annalen der Physik, vol. 531, pp. 1900013 (1–14), (2019).
     Google Scholar
  11. Ch. Merkatos, B. Toman, A. Possolo, and S. Schlamminger, “Shades of dark uncertainty and consensus value for the Newtonian constant of gravitation,” Metrologia, vol. 56, pp. 054001 (1–16), (2019).
     Google Scholar
  12. Ch. Xue et al., “Precision measurement of the Newtonian gravitational constant,” National Science Review, vol. 7, pp. 1803–1817, (2020).
     Google Scholar
  13. P. G. Roll, R. Krotkov, and R. H. Dicke, “The equivalence of inertial and passive gravitational mass,” Annals of Physics, vol. 26, pp. 442–517, (1964).
     Google Scholar
  14. S. Schlamminger, K. Y. Choi, T. A Wagner, J. H. Gundlach, and E. G. Adelberger, “Test of equivalence principle using a rotating torsion balance,” Phys. Rev. Lett., vol. 100, 041101, (2008).
     Google Scholar
  15. L. B. Kreuzer, „Experimental measurement of the equivalence of active and passive gravitational mass,” Phys. Rev., vol. 169, 1007, (1968).
     Google Scholar
  16. C. M. Will, “Active mass in relativistic gravity: theoretical interpretation of the Kreuzer experiment,” The Astronomical Journal, vo. 204, pp. 224–234, (1976).
     Google Scholar
  17. C. M. Will, “Theory and Experiment in Gravitational Physics,” Second Edition, Cambridge University Press, Cambridge, Chapter 2, (2018).
     Google Scholar
  18. C. Lämmerzahl. “Testing the Foundations of the Foundations of General Relativity,” AIP Conference Proceedings, vol. 1256, pp. 51–65, (2010).
     Google Scholar
  19. H. de Boer, “Experiments relating to the Newtonian gravitational constant,” In Precision Measurement and Fundamental Constants II, Ed. B. N. Taylor and W. D. Phillips, National Bureau of |Standards, (1981), pp. 561–572, Table 2.
     Google Scholar
  20. G. T. Gillies, and C. S. Unnikrishnan, “The attracting masses in measurements of G: an overview of physical characteristics and performance,” Phil. Trans. R. Soc. A, vol. 372, 0022, Table 1, (2014).
     Google Scholar
  21. T. J. Quinn, C. C. Speake, S. J. Richman, R.S. Davis, and A. Picard, “A new determination of G using two independent methods,” Phys. Rev. Lett., vol. 87, 111101, (2001).
     Google Scholar
  22. T. Quinn, H. Parks, C. Speake, and R. Davis, “Improved determination of G using two methods,” Phys. Rev. Lett., vol. 111, 101102, (2013).
     Google Scholar
  23. T. Quinn, C. Speake, H. Parks, and R. Davis, “The BIPM measurements of the Newtonian constant of gravitation,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 372, pp. 2026, (2014).
     Google Scholar
  24. J. H. Gundlach, and S. M. Merkowitz, “Measurement of Newton´s constant using a torsion balance with angular acceleration feedback,” Phys. Rev. Lett., vol. 85, pp. 2869–2872, (2000).
     Google Scholar
  25. Q. Li et al., “Measurements of the gravitational constant using two independent methods,” Nature, vol. 560, pp. 582–588, (2018).
     Google Scholar
  26. T. R. Armstrong, and M. P. Fitzgerald, “New measurements of G using the measurements standards laboratory torsion balance,” Phys. Rev. Let., vol. 91, pp. 201101, (2003).
     Google Scholar
  27. R. Newman, M. Bantel, E. Berg, and W. Cross, “A measurement of G with a cryogenic torsion pendulum,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 372, pp. 2026, (2014).
     Google Scholar
  28. H. V. Parks, and J. E. Faller, “Simple pendulum determination of the gravitational constant,” Phys. Rev. Lett., vol. 105, pp. 110801, (2010).
     Google Scholar
  29. G. G. Luther, and W. R. Towler, “Redetermination of the Newtonian gravitational constant,” Phys. Rev. Lett., vol. 48, p. 121, (1982).
     Google Scholar
  30. G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevendelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature, vol. 510, pp. 518–521, (2014).
     Google Scholar
  31. S. Schlamminger, E. Holzschuh, W. Kündig, F. Nolting, R. E. Pixley, J. Schurr, and U. Straumann, “Measurement of Newton´s gravitational constant,” Phys. Rev. D, vol. 74, pp. 082001, (2006).
     Google Scholar
  32. U. Kleinevoß, “Bestimmung der Newtonschen Gravitationskonstanten G,” PhD. Thesis, Bergische Universität Wuppertal, Wuppertal, Germany, (2002).
     Google Scholar
  33. F. Nolting, J. Schurr, S. Schlamminger, and W. Kündig, “Determination of the gravitational constant G by means of a beam balance,” Europhysics News, (2000). http://dx.doi.org/10.1051/epn:2000406.
     Google Scholar
  34. J. J. Gilvarry, and P. M. Müller, “Possible variation of the gravitational constant over the elements,” Phys. Rev. Lett., vol. 28, pp. 1665–1669, (1972).
     Google Scholar
  35. A. Einstein, “Die Grundlage der allgemeinen Relativitätstheorie,” Annalen der Physik, vol. 49, pp. 769–822, (1916).
     Google Scholar
  36. I. Newton, “Optics”, Dover Publications, reissued in 2012, ISBN-10: 0-486-60205-2, Query 31, p. 376.
     Google Scholar
  37. E. Fischbach, D. Sudarsky, A. Szafer, C. Talmadge, and S. H. Aronson, “Reanalysis of the Eötvös experiment,” Phys. Rev. Lett., vol. 56, pp. 3–6, (1986).
     Google Scholar
  38. E. Fischbach, J. T. Gruenwald, D. E. Krause, M. H. McDuffie, M. J. Mueterthies, and C. Y. Scarlett, “Significance of composition-dependent effects in fifth-force searches,” Arxiv: 2012.02862v2.
     Google Scholar
  39. C. W. Stubbs, E. G. Adelberger, F. J. Raab, J. H. Gundlach, B. R. Heckel, K. D. McMurry, H. E. Swanson, and R. Watanabe, “Search for intermediate-range interaction,” Phys. Rev. Lett., vol. 58, pp. 1070–1073, (1987).
     Google Scholar
  40. G. M. Tino, L. Cacciapuoti, S. Capozzielo, G. Lambiase, and F. Sorrention, “Precision gravity tests and the Einstein equivalence principle,” Progress in Particle and Nuclear Physics, vol. 112, pp. 103772, (2020).
     Google Scholar
  41. J. Stávek, “Spin interpreted as the angular momentum curvature, electron g-factor interpreted as the ratio of toroidal torsion and curvature, unlocking of the fixed Planck constant h – new tests for old physics,” European Journal of Applied Physics, vol. 3, pp. 61-66, Issue 1, (2021).
     Google Scholar
  42. J. Stávek, “Rydberg constant interpreted as the Gaussian curvature, Gauss-Bohr-de Broglie model – two shadow projections of the helix, unlocking of the fixed constant c of the speed of light – new tests for old physics,” European Journal of Applied Physics, vol. 3, pp., Issue 2, (2021).
     Google Scholar
  43. J. J. Mareš, P. Hubík, V. Špička, J. Stávek, J. Šesták, and J. Krištofík, “Shadows over the speed of light,” Physica Scripta, vol. 2012, 014080, 2012.
     Google Scholar
  44. C. Speake, and T. Quinn, “The search for Newton´s constant”, Physics Today, vol. 67, pp. 27 – 33, (2014).
     Google Scholar
  45. T. Quinn, “Don´t stop the quest to measure Big G”, Nature, vol. 505, p. 455, (2014).
     Google Scholar
  46. S. Schlamminger, “Gravity measured with record precision”, Nature, vol. 560, pp. 562–563, (2018).
     Google Scholar


Most read articles by the same author(s)

1 2 3 > >>