The Newtonian Gravitational Constant G Interpreted as the Gravitational Inertia of Vacuum - G0. How to Arrange Twelve Precise Experimental Determinations of GZ in their Spread 500 ppm? Unlocking of the Recommended Value of the Constant G – New Tests for Old Physics
##plugins.themes.bootstrap3.article.main##
We have newly interpreted the Newtonian gravitational constant G as the gravitational inertia of vacuum G0. The source mass inserted into vacuum decreases this value G0 to GZ on the dependence of the atomic number Z of atoms in the source mass. This is the mechanism for the attraction of test masses through vacuum – the test mass follows the decrease of the gravitational inertia of vacuum towards the source mass. We have extracted the relationship GZ = G0 (1 – k Z) where k is the experimental constant from ten actual precise experimental determinations of GZ. This model was tested on two precise experimental values of GZ determined for GEARTH, and GBRASS. This model enables to predict values GZ for atoms, molecules and compositions of the studied source masses and to realize experimental verification with the existing experimental technology. The experimental GZ values are thus arranged into a system and the spread in these data is explained as the influence of atoms of the source masses on their surrounding via the decrease of the gravitational inertia of vacuum. We might achieve the accuracy of experimental values GZ with six significant figures for all configurations of source and test masses.
References
-
M. U. Sagitov, “Current status of determinations of the gravitational constant and the mass of the Earth,” Soviet Astronomy, vol. 13, pp. 712–718, (1970).
Google Scholar
1
-
G. T. Gillies, “The Newtonian gravitational constant: an index of measurement,” Bureau International des Poids et Mesures, France, 1982.
Google Scholar
2
-
G. T. Gillies, “The Newtonian gravitational constant: recent measurements and related studies,” Rep. Prog. Phys., vol. 60, pp. 151–225, (1997).
Google Scholar
3
-
J. Luo, and Z. K. Hu, “Status of measurement of the Newtonian gravitational constant,” Class. Quantum Grav., vol. 17, pp. 2351–2363, (2000).
Google Scholar
4
-
V. K. Milyukov, J. Luo, Ch. Tao, and A. P. Mironov, “Status of the experiments on measurement of the Newtonian gravitational constant,” Gravitation and Cosmology, vol. 14, pp. 368–375, (2008).
Google Scholar
5
-
V. Milyukov, and S. H. Fan, “The Newtonian gravitational constant: modern status of measurement and the new CODATA value,” Gravitation and Cosmology, vol. 18, pp. 216–224, (2012).
Google Scholar
6
-
T. Quinn, and C. Speake, “The Newtonian constant of gravitation, a constant too difficult to measure?” 13 contributions to a Theo Murphy Meeting Issue, Phil. Trans. R Soc., vol. A 372, (2014).
Google Scholar
7
-
S. Schlamminger, J. H. Gundlach, and R. D. Newman, “Recent measurements of the gravitational constant as a function of time,” Phys. Rev. D, vol. 91, 121101(R), (2015).
Google Scholar
8
-
C. Rothleitner, and S. Schlamminger, “Invited review article: measurement of the Newtonian constant of gravitation, G,” Rev. Sci. Instrum., vol. 88, pp. 11110-1–111101-27, (2017).
Google Scholar
9
-
J. Wu et al., “Progress in precise measurements of the gravitational constant,” Annalen der Physik, vol. 531, pp. 1900013 (1–14), (2019).
Google Scholar
10
-
Ch. Merkatos, B. Toman, A. Possolo, and S. Schlamminger, “Shades of dark uncertainty and consensus value for the Newtonian constant of gravitation,” Metrologia, vol. 56, pp. 054001 (1–16), (2019).
Google Scholar
11
-
Ch. Xue et al., “Precision measurement of the Newtonian gravitational constant,” National Science Review, vol. 7, pp. 1803–1817, (2020).
Google Scholar
12
-
P. G. Roll, R. Krotkov, and R. H. Dicke, “The equivalence of inertial and passive gravitational mass,” Annals of Physics, vol. 26, pp. 442–517, (1964).
Google Scholar
13
-
S. Schlamminger, K. Y. Choi, T. A Wagner, J. H. Gundlach, and E. G. Adelberger, “Test of equivalence principle using a rotating torsion balance,” Phys. Rev. Lett., vol. 100, 041101, (2008).
Google Scholar
14
-
L. B. Kreuzer, „Experimental measurement of the equivalence of active and passive gravitational mass,” Phys. Rev., vol. 169, 1007, (1968).
Google Scholar
15
-
C. M. Will, “Active mass in relativistic gravity: theoretical interpretation of the Kreuzer experiment,” The Astronomical Journal, vo. 204, pp. 224–234, (1976).
Google Scholar
16
-
C. M. Will, “Theory and Experiment in Gravitational Physics,” Second Edition, Cambridge University Press, Cambridge, Chapter 2, (2018).
Google Scholar
17
-
C. Lämmerzahl. “Testing the Foundations of the Foundations of General Relativity,” AIP Conference Proceedings, vol. 1256, pp. 51–65, (2010).
Google Scholar
18
-
H. de Boer, “Experiments relating to the Newtonian gravitational constant,” In Precision Measurement and Fundamental Constants II, Ed. B. N. Taylor and W. D. Phillips, National Bureau of |Standards, (1981), pp. 561–572, Table 2.
Google Scholar
19
-
G. T. Gillies, and C. S. Unnikrishnan, “The attracting masses in measurements of G: an overview of physical characteristics and performance,” Phil. Trans. R. Soc. A, vol. 372, 0022, Table 1, (2014).
Google Scholar
20
-
T. J. Quinn, C. C. Speake, S. J. Richman, R.S. Davis, and A. Picard, “A new determination of G using two independent methods,” Phys. Rev. Lett., vol. 87, 111101, (2001).
Google Scholar
21
-
T. Quinn, H. Parks, C. Speake, and R. Davis, “Improved determination of G using two methods,” Phys. Rev. Lett., vol. 111, 101102, (2013).
Google Scholar
22
-
T. Quinn, C. Speake, H. Parks, and R. Davis, “The BIPM measurements of the Newtonian constant of gravitation,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 372, pp. 2026, (2014).
Google Scholar
23
-
J. H. Gundlach, and S. M. Merkowitz, “Measurement of Newton´s constant using a torsion balance with angular acceleration feedback,” Phys. Rev. Lett., vol. 85, pp. 2869–2872, (2000).
Google Scholar
24
-
Q. Li et al., “Measurements of the gravitational constant using two independent methods,” Nature, vol. 560, pp. 582–588, (2018).
Google Scholar
25
-
T. R. Armstrong, and M. P. Fitzgerald, “New measurements of G using the measurements standards laboratory torsion balance,” Phys. Rev. Let., vol. 91, pp. 201101, (2003).
Google Scholar
26
-
R. Newman, M. Bantel, E. Berg, and W. Cross, “A measurement of G with a cryogenic torsion pendulum,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 372, pp. 2026, (2014).
Google Scholar
27
-
H. V. Parks, and J. E. Faller, “Simple pendulum determination of the gravitational constant,” Phys. Rev. Lett., vol. 105, pp. 110801, (2010).
Google Scholar
28
-
G. G. Luther, and W. R. Towler, “Redetermination of the Newtonian gravitational constant,” Phys. Rev. Lett., vol. 48, p. 121, (1982).
Google Scholar
29
-
G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevendelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature, vol. 510, pp. 518–521, (2014).
Google Scholar
30
-
S. Schlamminger, E. Holzschuh, W. Kündig, F. Nolting, R. E. Pixley, J. Schurr, and U. Straumann, “Measurement of Newton´s gravitational constant,” Phys. Rev. D, vol. 74, pp. 082001, (2006).
Google Scholar
31
-
U. Kleinevoß, “Bestimmung der Newtonschen Gravitationskonstanten G,” PhD. Thesis, Bergische Universität Wuppertal, Wuppertal, Germany, (2002).
Google Scholar
32
-
F. Nolting, J. Schurr, S. Schlamminger, and W. Kündig, “Determination of the gravitational constant G by means of a beam balance,” Europhysics News, (2000). http://dx.doi.org/10.1051/epn:2000406.
Google Scholar
33
-
J. J. Gilvarry, and P. M. Müller, “Possible variation of the gravitational constant over the elements,” Phys. Rev. Lett., vol. 28, pp. 1665–1669, (1972).
Google Scholar
34
-
A. Einstein, “Die Grundlage der allgemeinen Relativitätstheorie,” Annalen der Physik, vol. 49, pp. 769–822, (1916).
Google Scholar
35
-
I. Newton, “Optics”, Dover Publications, reissued in 2012, ISBN-10: 0-486-60205-2, Query 31, p. 376.
Google Scholar
36
-
E. Fischbach, D. Sudarsky, A. Szafer, C. Talmadge, and S. H. Aronson, “Reanalysis of the Eötvös experiment,” Phys. Rev. Lett., vol. 56, pp. 3–6, (1986).
Google Scholar
37
-
E. Fischbach, J. T. Gruenwald, D. E. Krause, M. H. McDuffie, M. J. Mueterthies, and C. Y. Scarlett, “Significance of composition-dependent effects in fifth-force searches,” Arxiv: 2012.02862v2.
Google Scholar
38
-
C. W. Stubbs, E. G. Adelberger, F. J. Raab, J. H. Gundlach, B. R. Heckel, K. D. McMurry, H. E. Swanson, and R. Watanabe, “Search for intermediate-range interaction,” Phys. Rev. Lett., vol. 58, pp. 1070–1073, (1987).
Google Scholar
39
-
G. M. Tino, L. Cacciapuoti, S. Capozzielo, G. Lambiase, and F. Sorrention, “Precision gravity tests and the Einstein equivalence principle,” Progress in Particle and Nuclear Physics, vol. 112, pp. 103772, (2020).
Google Scholar
40
-
J. Stávek, “Spin interpreted as the angular momentum curvature, electron g-factor interpreted as the ratio of toroidal torsion and curvature, unlocking of the fixed Planck constant h – new tests for old physics,” European Journal of Applied Physics, vol. 3, pp. 61-66, Issue 1, (2021).
Google Scholar
41
-
J. Stávek, “Rydberg constant interpreted as the Gaussian curvature, Gauss-Bohr-de Broglie model – two shadow projections of the helix, unlocking of the fixed constant c of the speed of light – new tests for old physics,” European Journal of Applied Physics, vol. 3, pp., Issue 2, (2021).
Google Scholar
42
-
J. J. Mareš, P. Hubík, V. Špička, J. Stávek, J. Šesták, and J. Krištofík, “Shadows over the speed of light,” Physica Scripta, vol. 2012, 014080, 2012.
Google Scholar
43
-
C. Speake, and T. Quinn, “The search for Newton´s constant”, Physics Today, vol. 67, pp. 27 – 33, (2014).
Google Scholar
44
-
T. Quinn, “Don´t stop the quest to measure Big G”, Nature, vol. 505, p. 455, (2014).
Google Scholar
45
-
S. Schlamminger, “Gravity measured with record precision”, Nature, vol. 560, pp. 562–563, (2018).
Google Scholar
46
Most read articles by the same author(s)
-
Jiří Stávek,
ChatGPT on the Einstein-Podolsky-Rosen Paradox , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
ChatGPT on the Gravitational Redshift , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
ChatGPT on the Cosmological Redshift and the Hubble Constant , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
Spin Interpreted as the Angular Momentum Curvature, Electron g-factor Interpreted as the Ratio of Toroidal Torsion and Curvature, Unlocking of the Fixed Planck Constant h – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 1 (2021) -
Jiří Stávek,
A New Interpretation of Contributions Presented at the Solvay Conference 1911. Can We Falsify the “Geocentric” Foundations of Quantum Mechanics in the Solar System? , European Journal of Applied Physics: Vol. 3 No. 6 (2021) -
Jiří Stávek,
ChatGPT on the Mathematical Language in Physics , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
The Rydberg Constant Interpreted as the Gaussian Curvature, Gauss-Bohr-de Broglie Model – Two Shadow Projections of the Helix, Unlocking of the Fixed Constant c of the Speed of Light – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
A New Interpretation of the Physical Color Theory Based on the Descartes´ Rotation Energy of Visible, Ultraviolet and Infrared Photons , European Journal of Applied Physics: Vol. 5 No. 5 (2023) -
Jiří Stávek,
How to Relieve the Hubble Constant Tension? (Earth´s Gravitational Redshift + Earth´s Diurnal Aberration) , European Journal of Applied Physics: Vol. 4 No. 2 (2022) -
Jiří Stávek,
What is Hidden in the Planck Distribution Function and the Wien´s Peaks? III. Fission of Solar Photons into Thermons (“Dark Heat”) , European Journal of Applied Physics: Vol. 5 No. 2 (2023)