Spin Interpreted as the Angular Momentum Curvature, Electron g-factor Interpreted as the Ratio of Toroidal Torsion and Curvature, Unlocking of the Fixed Planck Constant h – New Tests for Old Physics
##plugins.themes.bootstrap3.article.main##
We have proposed several new rules for the description of events in the microworld. We have newly defined the interpretation of the quantum spin as the angular momentum curvature and defined the geometry of helixes and toroidal helixes of quantum particles. Some new properties of quantum particles can be experimentally tested. Based on this concept we have defined the electron g-factor as the ratio of the toroidal torsion and curvature and events between the electron and its coupling photon. From this model we have extracted the values of the fine-structure constant α and the Planck constant h. The comparison of these values with the latest experimental data reveals some possible circular arguments in the experimental determination – the so-called SI barrier created by the fixing of the SI constants (SI – International System of Units). We propose on the one side to analyze those possible circular arguments and on the other side to continue to develop new generations of instruments for getting one or two more significant figures of those values h and c. The predictions of this classical model could be compared with the best predictions of QED (quantum electrodynamics) for the fine-structure constant α.
References
-
N. Bohr, “On the constitution of atoms and molecules,” Phil. Mag., vol. 26, pp. 1- 24, 1913.
Google Scholar
1
-
A. L. Parson, “A magneton theory of the structure of the atom,” Smithsonian Miscellaneous Collection, Pub. 2371, 80 pp, 1915.
Google Scholar
2
-
A. H. Compton, “The magnetic electron,” Journal of the Franklin Institute, vol. 192, pp. 145-155, (1921).
Google Scholar
3
-
L. S. Lewitt, “Is the photon a double helix?” Lett. Nuovo Cim., vol. 21, pp. 222-223, 1978.
Google Scholar
4
-
J. G. Williamson, and M. B. van der Mark, “Is the electron a photon with toroidal topology?” Annales de la Fondation Louis de Broglie, vol. 22, pp. 133, (1997).
Google Scholar
5
-
M. H. Mac Gregor, The enigmatic electron, 2nd edition, El Mac Books, USA, 2013.
Google Scholar
6
-
O. Consa, “Helical model of the electron,” Progress in Physics, vol. 14, pp. 80-90, 2018.
Google Scholar
7
-
R. Gauthier, “Quantum-entangled superluminal double-helix photon produces a relativistic superluminal quantum-vortex zitterbewegung electron and positron,” J. Phys.: Conf. Ser., vol. 1251, 012016, 2019.
Google Scholar
8
-
S. Chen, “Double-helix structure of photon,” Physical Science International Journal, vol. 24, no. 55532, 2020.
Google Scholar
9
-
A. Einstein, “Zur Elektrodynamik der bewegter Körper,” Annalen der Physik, vol.17, pp. 891-921, 1905.
Google Scholar
10
-
A. Einstein, “Die Feldgleichungen der Gravitation,” Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, pp. 844-847, 1915.
Google Scholar
11
-
J. Soldner, “Űber die Ablenkung eines Lichtstrahls von seiner geradliniger Bewegung durch die Atraktion eines Weltkörpers, an welchem er nahe vorbeigeht,” Berliner Astronomisches Jahrbuch, pp. 161-172, 1801.
Google Scholar
12
-
J. P. Karr, and D. Marchand, “Progress on the proton-radius puzzle,” Nature, pp. 61-62, 2019.
Google Scholar
13
-
“2018 CODATA Value: electron g factor,” The NIST Reference on Constants, Units, and Uncertainty. NIST, 20 May, 2019.
Google Scholar
14
-
P. J. Mohr, B. J. Taylor, and D. B. Newell, “Fine structure constant,” CODATA Internationally recommended 2018 values of the fundamental physical constants, 2019.
Google Scholar
15
-
Lord Rayleigh, “Investigations in optics with special reference to the spectroscopy,” Philosophical Magazine, vol. 8, pp. 261-274, 1879.
Google Scholar
16
-
A. Einstein, “Strahlungs-Emission und -Absorption nach der Quantentheorie,” Verhandlungen der Deutschen Physikalischen Gesselschaft, vol. 18, 318-323, 1916.
Google Scholar
17
-
E. Schrödinger, “Zur Quantendynamik des Elektrons,” In Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse, pp. 63-72, 1931.
Google Scholar
18
-
D. Hestenes, “The zitterbewegung interpretation of quantum mechanics,” Foundations of Physik, vol. 20, pp. 1213-1232, 1990.
Google Scholar
19
-
R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “State of the art in the determination of the fine structure constant: test of Quantum Electrodynamics and determination of h/mu,” Annalen der Physik, pp. 1-9, 2018.
Google Scholar
20
-
R. H. Parker, Ch. Yu, W. Zhong, B. Estey, and H. Müller, “Measurement of the fine-structure constant as a test of the Standard Model”, Science, vol. 360, pp. 191-195, 2018.
Google Scholar
21
-
P. Cladé, F. Nez, F. Biraben, and S. Guellati-Khélifa, “State of the art in the determination of the fine-structure constant and the ratio h/mu,” Comptes Rendus Physique, vol. 20, pp. 77-91, 2019.
Google Scholar
22
-
L. Morel, Z. Yao, P. Cladé, and S. Guellati-Khélifa, “Determination of the fine-structure constant with an accuracy of 81 perts per trillion,” Nature, vol. 588, 61-65, 2020.
Google Scholar
23
-
T. Aoyama, T. Kinoshita, and M. Nio, “Revised and improved value of the QED tenth-order electron anomalous magnetic moment,” Physical Review D, vol. 97, 036001, 2018.
Google Scholar
24
-
R. Steiner, “History and progress on accurate measurements of the Planck constant,” Rep. Prog. Phys., vol. 76, 016101, 2013.
Google Scholar
25
-
P. J. Mohr, D. B. Newell, B. N. Taylor, and E. Tiesinga, “Data and analysis for the CODATA 2017 special fundamental constants adjustment,” Metrologia, vol. 55, pp. 125-146, 2018.
Google Scholar
26
-
D. B. Newell et al., “The CODATA 2017 values of h, e, k, and NA for the revision of the SI,” Metrologia, vol. 55, pp. L13-L16, 2018.
Google Scholar
27
-
Special Issue: The Revised SI: “Fundamental constants, basic physics and units,” Annalen der Physik, vol. 531, Issue 5, 2019.
Google Scholar
28
-
M. A: Martin-Delgado, “The new SI and the fundamental constants of nature,” European Journal of Physics, vol. 41, 063003, 2020.
Google Scholar
29
-
I. A. Robinson, and S. Schlamminger, “The watt or Kibble balance: a technique for implementing the new SI definition of the unit of mass,” Metrologia, vol. 53, pp. A46-A74, 2016.
Google Scholar
30
-
D. Haddad et al., “Measurement of the Planck constant at the National Institute of Standards and Technology from 2015 to 2017,” Metrologia, vol. 54, pp. 633-641, 2017.
Google Scholar
31
-
B. M. Wood, C. A. Sanchez, R. G. Green, and J. O. Liard, “A summary of the Planck constant determinations using the NRC Kibble balance,” Metrologia, vol. 54, pp. 399-409, 2017.
Google Scholar
32
-
S. Schlamminger, and D. Haddad, “The Kibble balance and the kilogram,” Comptes Rendus Physique, vol. 20, pp. 55-63, 2019.
Google Scholar
33
-
H. Bettin, K. Fujii, and A. Nicolaus, “Silicon spheres for the future realization of the kilogram and the mole,” Comptes Rendus Physique, vol. 20, pp. 64-76, 2019.
Google Scholar
34
-
N. Kuramoto et al., “Realization of the new kilogram using 28Si- enriched spheres and dissemination of mass standards at NMIJ,” MAPAN-Journal of Metrology Society of India, https://doi.org/10.1007/s12647-020-00393-2, 2020.
Google Scholar
35
-
D. Raynaud, “Determining the speed of light (1676-1983): An internalist study in the sociology of science,” L´année sociologique, vol. 63, pp. 359-398, 2013.
Google Scholar
36
-
K. M. Evenson et al., “Speed of light from direct frequency and wavelength. Measurements of the Methane-stabilized laser,” Phys. Rev. Lett. Vol. 29, p. 1346, 1972.
Google Scholar
37
-
T. G. Blaney et al., “Measurement of the speed of light. II. Wavelength measurements and conclusion,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 355, pp. 89-114, 1977.
Google Scholar
38
-
P. T. Woods, K. C. Shotton, and W. R. C. Rowley, “Frequency determination of visible laser light by interferometric comparison with upconverted CO2 laser radiation,” Applied Optics, vol. 17, pp. 1048-1054, 1978.
Google Scholar
39
-
J. J. Mareš, P. Hubík, V. Špička, J. Stávek, J. Šesták, and J. Krištofík, “Shadows over the speed of light,” Physica Scripta, vol. 2012, 014080, 2012.
Google Scholar
40
Most read articles by the same author(s)
-
Jiří Stávek,
ChatGPT on the Einstein-Podolsky-Rosen Paradox , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
ChatGPT on the Gravitational Redshift , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
The Newtonian Gravitational Constant G Interpreted as the Gravitational Inertia of Vacuum - G0. How to Arrange Twelve Precise Experimental Determinations of GZ in their Spread 500 ppm? , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
ChatGPT on the Cosmological Redshift and the Hubble Constant , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
A New Interpretation of Contributions Presented at the Solvay Conference 1911. Can We Falsify the “Geocentric” Foundations of Quantum Mechanics in the Solar System? , European Journal of Applied Physics: Vol. 3 No. 6 (2021) -
Jiří Stávek,
ChatGPT on the Mathematical Language in Physics , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
The Rydberg Constant Interpreted as the Gaussian Curvature, Gauss-Bohr-de Broglie Model – Two Shadow Projections of the Helix, Unlocking of the Fixed Constant c of the Speed of Light – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
A New Interpretation of the Physical Color Theory Based on the Descartes´ Rotation Energy of Visible, Ultraviolet and Infrared Photons , European Journal of Applied Physics: Vol. 5 No. 5 (2023) -
Jiří Stávek,
How to Relieve the Hubble Constant Tension? (Earth´s Gravitational Redshift + Earth´s Diurnal Aberration) , European Journal of Applied Physics: Vol. 4 No. 2 (2022) -
Jiří Stávek,
What is Hidden in the Planck Distribution Function and the Wien´s Peaks? III. Fission of Solar Photons into Thermons (“Dark Heat”) , European Journal of Applied Physics: Vol. 5 No. 2 (2023)