##plugins.themes.bootstrap3.article.main##

We have proposed several new rules for the description of events in the microworld. We have newly defined the interpretation of the quantum spin as the angular momentum curvature and defined the geometry of helixes and toroidal helixes of quantum particles. Some new properties of quantum particles can be experimentally tested. Based on this concept we have defined the electron g-factor as the ratio of the toroidal torsion and curvature and events between the electron and its coupling photon. From this model we have extracted the values of the fine-structure constant α and the Planck constant h. The comparison of these values with the latest experimental data reveals some possible circular arguments in the experimental determination – the so-called SI barrier created by the fixing of the SI constants (SI – International System of Units). We propose on the one side to analyze those possible circular arguments and on the other side to continue to develop new generations of instruments for getting one or two more significant figures of those values h and c. The predictions of this classical model could be compared with the best predictions of QED (quantum electrodynamics) for the fine-structure constant α.

References

  1. N. Bohr, “On the constitution of atoms and molecules,” Phil. Mag., vol. 26, pp. 1- 24, 1913.
     Google Scholar
  2. A. L. Parson, “A magneton theory of the structure of the atom,” Smithsonian Miscellaneous Collection, Pub. 2371, 80 pp, 1915.
     Google Scholar
  3. A. H. Compton, “The magnetic electron,” Journal of the Franklin Institute, vol. 192, pp. 145-155, (1921).
     Google Scholar
  4. L. S. Lewitt, “Is the photon a double helix?” Lett. Nuovo Cim., vol. 21, pp. 222-223, 1978.
     Google Scholar
  5. J. G. Williamson, and M. B. van der Mark, “Is the electron a photon with toroidal topology?” Annales de la Fondation Louis de Broglie, vol. 22, pp. 133, (1997).
     Google Scholar
  6. M. H. Mac Gregor, The enigmatic electron, 2nd edition, El Mac Books, USA, 2013.
     Google Scholar
  7. O. Consa, “Helical model of the electron,” Progress in Physics, vol. 14, pp. 80-90, 2018.
     Google Scholar
  8. R. Gauthier, “Quantum-entangled superluminal double-helix photon produces a relativistic superluminal quantum-vortex zitterbewegung electron and positron,” J. Phys.: Conf. Ser., vol. 1251, 012016, 2019.
     Google Scholar
  9. S. Chen, “Double-helix structure of photon,” Physical Science International Journal, vol. 24, no. 55532, 2020.
     Google Scholar
  10. A. Einstein, “Zur Elektrodynamik der bewegter Körper,” Annalen der Physik, vol.17, pp. 891-921, 1905.
     Google Scholar
  11. A. Einstein, “Die Feldgleichungen der Gravitation,” Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, pp. 844-847, 1915.
     Google Scholar
  12. J. Soldner, “Űber die Ablenkung eines Lichtstrahls von seiner geradliniger Bewegung durch die Atraktion eines Weltkörpers, an welchem er nahe vorbeigeht,” Berliner Astronomisches Jahrbuch, pp. 161-172, 1801.
     Google Scholar
  13. J. P. Karr, and D. Marchand, “Progress on the proton-radius puzzle,” Nature, pp. 61-62, 2019.
     Google Scholar
  14. “2018 CODATA Value: electron g factor,” The NIST Reference on Constants, Units, and Uncertainty. NIST, 20 May, 2019.
     Google Scholar
  15. P. J. Mohr, B. J. Taylor, and D. B. Newell, “Fine structure constant,” CODATA Internationally recommended 2018 values of the fundamental physical constants, 2019.
     Google Scholar
  16. Lord Rayleigh, “Investigations in optics with special reference to the spectroscopy,” Philosophical Magazine, vol. 8, pp. 261-274, 1879.
     Google Scholar
  17. A. Einstein, “Strahlungs-Emission und -Absorption nach der Quantentheorie,” Verhandlungen der Deutschen Physikalischen Gesselschaft, vol. 18, 318-323, 1916.
     Google Scholar
  18. E. Schrödinger, “Zur Quantendynamik des Elektrons,” In Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse, pp. 63-72, 1931.
     Google Scholar
  19. D. Hestenes, “The zitterbewegung interpretation of quantum mechanics,” Foundations of Physik, vol. 20, pp. 1213-1232, 1990.
     Google Scholar
  20. R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “State of the art in the determination of the fine structure constant: test of Quantum Electrodynamics and determination of h/mu,” Annalen der Physik, pp. 1-9, 2018.
     Google Scholar
  21. R. H. Parker, Ch. Yu, W. Zhong, B. Estey, and H. Müller, “Measurement of the fine-structure constant as a test of the Standard Model”, Science, vol. 360, pp. 191-195, 2018.
     Google Scholar
  22. P. Cladé, F. Nez, F. Biraben, and S. Guellati-Khélifa, “State of the art in the determination of the fine-structure constant and the ratio h/mu,” Comptes Rendus Physique, vol. 20, pp. 77-91, 2019.
     Google Scholar
  23. L. Morel, Z. Yao, P. Cladé, and S. Guellati-Khélifa, “Determination of the fine-structure constant with an accuracy of 81 perts per trillion,” Nature, vol. 588, 61-65, 2020.
     Google Scholar
  24. T. Aoyama, T. Kinoshita, and M. Nio, “Revised and improved value of the QED tenth-order electron anomalous magnetic moment,” Physical Review D, vol. 97, 036001, 2018.
     Google Scholar
  25. R. Steiner, “History and progress on accurate measurements of the Planck constant,” Rep. Prog. Phys., vol. 76, 016101, 2013.
     Google Scholar
  26. P. J. Mohr, D. B. Newell, B. N. Taylor, and E. Tiesinga, “Data and analysis for the CODATA 2017 special fundamental constants adjustment,” Metrologia, vol. 55, pp. 125-146, 2018.
     Google Scholar
  27. D. B. Newell et al., “The CODATA 2017 values of h, e, k, and NA for the revision of the SI,” Metrologia, vol. 55, pp. L13-L16, 2018.
     Google Scholar
  28. Special Issue: The Revised SI: “Fundamental constants, basic physics and units,” Annalen der Physik, vol. 531, Issue 5, 2019.
     Google Scholar
  29. M. A: Martin-Delgado, “The new SI and the fundamental constants of nature,” European Journal of Physics, vol. 41, 063003, 2020.
     Google Scholar
  30. I. A. Robinson, and S. Schlamminger, “The watt or Kibble balance: a technique for implementing the new SI definition of the unit of mass,” Metrologia, vol. 53, pp. A46-A74, 2016.
     Google Scholar
  31. D. Haddad et al., “Measurement of the Planck constant at the National Institute of Standards and Technology from 2015 to 2017,” Metrologia, vol. 54, pp. 633-641, 2017.
     Google Scholar
  32. B. M. Wood, C. A. Sanchez, R. G. Green, and J. O. Liard, “A summary of the Planck constant determinations using the NRC Kibble balance,” Metrologia, vol. 54, pp. 399-409, 2017.
     Google Scholar
  33. S. Schlamminger, and D. Haddad, “The Kibble balance and the kilogram,” Comptes Rendus Physique, vol. 20, pp. 55-63, 2019.
     Google Scholar
  34. H. Bettin, K. Fujii, and A. Nicolaus, “Silicon spheres for the future realization of the kilogram and the mole,” Comptes Rendus Physique, vol. 20, pp. 64-76, 2019.
     Google Scholar
  35. N. Kuramoto et al., “Realization of the new kilogram using 28Si- enriched spheres and dissemination of mass standards at NMIJ,” MAPAN-Journal of Metrology Society of India, https://doi.org/10.1007/s12647-020-00393-2, 2020.
     Google Scholar
  36. D. Raynaud, “Determining the speed of light (1676-1983): An internalist study in the sociology of science,” L´année sociologique, vol. 63, pp. 359-398, 2013.
     Google Scholar
  37. K. M. Evenson et al., “Speed of light from direct frequency and wavelength. Measurements of the Methane-stabilized laser,” Phys. Rev. Lett. Vol. 29, p. 1346, 1972.
     Google Scholar
  38. T. G. Blaney et al., “Measurement of the speed of light. II. Wavelength measurements and conclusion,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 355, pp. 89-114, 1977.
     Google Scholar
  39. P. T. Woods, K. C. Shotton, and W. R. C. Rowley, “Frequency determination of visible laser light by interferometric comparison with upconverted CO2 laser radiation,” Applied Optics, vol. 17, pp. 1048-1054, 1978.
     Google Scholar
  40. J. J. Mareš, P. Hubík, V. Špička, J. Stávek, J. Šesták, and J. Krištofík, “Shadows over the speed of light,” Physica Scripta, vol. 2012, 014080, 2012.
     Google Scholar


Most read articles by the same author(s)

1 2 3 > >>