A New Interpretation of the Physical Color Theory Based on the Descartes´ Rotation Energy of Visible, Ultraviolet and Infrared Photons
##plugins.themes.bootstrap3.article.main##
During the past four hundred years the Newtonian and Goethean schools collected many experimental observations on the formation of colors. The situation became more complicated after the experiments of Land who documented that the classical color theory (= colors correspond to exact wavelength of light) is valid completely in the dark surroundings only. We are at the crossroads to find the boundary between the physical properties of colors and the perception of those photons in the retina and the brain. Therefore, the more general physical color theory should interpret those color effects where the classical physical color theory fails. As a potential candidate we present the overlooked Descartes´ color theory based on the rotation energy of visible, ultraviolet, and infrared photons. The rotation energy of colors was defined as E = hν570*(λx/λ570) where index describes the wavelength of photons in nanometers. This new mathematical description of colors enables to newly interpret situations where the average rotation energy of all reflected photons determines the color impression. The colors formed behind the triangular prism could be interpreted as the lateral diffusion of the rotation energy of ultraviolet and infrared photons (= called by Old Masters as the interplay of darkness with the light) through the field of refracted visible photons and with the modification of their rotation energy. The white color can be interpreted as the constructive interference of red, green, and blue colors with the constructive angle cos (120°) = -0,5. The black color can be interpreted as the destructive interference of cyan, magenta, and yellow colors with the destructive angle cos (180°) = -1. For the case of illumination with a range of wavelengths the resulting color is determined from the average rotation energy of all reflected photons – a model for the interpretation of the color constancy.
References
-
Newton I. Trinity College Notebook (MS Add. 3996), Cambridge University Library; 1667, p. 1661-1665.
Google Scholar
1
-
Newton I. A letter of Mr. Isaac Newton, Professor of the Mathematics in the University of Cambridge; containing his new theory about light and colors: sent by the author to the publisher from Cambridge, Febr. 6. 1671/72.
Google Scholar
2
-
Newton I. Opticks, Or a Treatise on the Reflections, Refractions, Inflections & Colours of Light. London, 1704.
Google Scholar
3
-
Castel LB. L´optique des coulers [Optics of colors]. Paris. 1740. French.
Google Scholar
4
-
Rosenfeld L. La theorie des couleurs de Newton et ses adversaires [Newton´s color theory and its opponents]. Isis. 1927; 9(1): 44-65. French.
Google Scholar
5
-
Westfall RS. The development of Newton´s theory of color. Isis. 1962; 53(3): 339-358.
Google Scholar
6
-
Westfall RS. Newton and his critics on the nature of colors. Archives international d´Histoire des Sciences. 1962; 15: 47-52.
Google Scholar
7
-
Sabra AI. Theories of light from Descartes to Newton. London. 1967.
Google Scholar
8
-
Lohne JA. Experimentum Crucis. Notes and Records of the Royal Society of London. 1968; 23(2): 169-199.
Google Scholar
9
-
Ronchi V. The nature of light: a historical survey. Cambridge, MA: Harvard University Press. 1970.
Google Scholar
10
-
Shapiro AE. The evolving structure of Newton´s theory of white light and color. Isis. 1980; 71(2): 211-235.
Google Scholar
11
-
Cottingham J. Descartes on colour. Proceedings of the Aristotelian Society. 1989-1990; 90: 231-246.
Google Scholar
12
-
Shapiro AE. Artist´s and Newton´s colors. Isis. 1994; 85(4): 600-630.
Google Scholar
13
-
Shapiro AE. The gradual acceptance of Newton´s theory of light and color, 1672-1727. Perspective on Science. 1996; 4(1): 59-140.
Google Scholar
14
-
Crone RA. A history of color: the evolution of theories of light and color. Springer, 1999.
Google Scholar
15
-
Martins RA, Silva CC. Newton and colour: the complex interplay of theory and experiment. Science & Education. 2001; 10: 287-305.
Google Scholar
16
-
Hentschel K. Mapping the Spectrum. Techniques of visual representation in research and teaching. Oxford. 2002.
Google Scholar
17
-
Darrigol O. A history of optics: from Greek antiquity to the nineteenth century. Oxford: Oxford University Press. 2002.
Google Scholar
18
-
Kuehni RG, Schwarz A. Color ordered. A survey of color order systems from antiquity to the present. Oxford, Oxford University Press, 2008.
Google Scholar
19
-
Parretta A. All the light from the Newton´s prism: effects of the multiple internal reflections. Optics Communication. 2020; 474: 126101.
Google Scholar
20
-
Shamey R, Kuehni RG. Pioneers of color. Springer, 2020.
Google Scholar
21
-
Goethe JW. Zur Farbenlehre. [On the color theory] Stuttgart. 1810. German.
Google Scholar
22
-
Werneburg JFC. Merkwürdige Phaenomene an und durch verschiedene Prismen. Zur richtigen Würdigung der Newton´schen und der von Goethe´schen Farbenlehre [Strange phenomena on and through various prisms. For the correct appreciation of Newton´s and Goethe´s color theory]. Schrag: Nürnberg. 1817. German.
Google Scholar
23
-
Bjerke A. Neue Beiträge zu Goethes Farbenlehre. Goethe contra Newton [New contributions to Goethe´s color theory. Goethe versus Newton]. Stuttgart: Verlag Freies Geistesleben. 1963. German.
Google Scholar
24
-
Holtsmark T. Newton´s Experimentum Crusis reconsidered. American Journal of Physics. 1970; 38: 1229-1235.
Google Scholar
25
-
Proskauer HO. The rediscovery of color: Goethe versus Newton today. Spring Valley, NY, Anthroposophic Press. 1986.
Google Scholar
26
-
Zemplén G. An eye for optical theory? PhD Thesis. Technological University Budapest. 2001.
Google Scholar
27
-
Nussbaumer I. Zur Farbenlehre. Entdeckung der unordentlichen Spektren. [On the color theory. The discovery of disordered spectra] Splitter: Wien. 2008. German.
Google Scholar
28
-
Rang M, Grebe-Ellis J. Komplementäre Spektren. Experimente mit einer Spiegel-Spalt-Blende [Complementary spectra. Experiments with a mirror slit aperture]. Mathematischer und Naturwissenschaftlicher Unterricht. 2009; 62(4): 227-231. German.
Google Scholar
29
-
Rang M, Müller O. Newton in Grőnland. Das umgestülpte experimentum crucis in der Streulichtkammer [Newton in Greenland. The inverted experimentum crusis in the light chamber]. Philosophia Naturalis. 2009; 46(1): 61-114. German.
Google Scholar
30
-
Sällstrőm P. Monochromatische Schattenstrahlen. Ein Film über Experimente zur Rehabilitierung der Dunkelheit [Monochromatic shadow rays. A film about experiments to rehabilitate darkness]. Stuttgart: Edition Waldorf. 2010. German.
Google Scholar
31
-
Müller O. Mehr Licht. Goethe mit Newton im Streit um die Farben [More light. Goethe and Newton in a dispute over colors]. Fischer, Frankfurt am Main. 2015. German.
Google Scholar
32
-
Rang M. Phänomenologie der komplementären Spektren [Phenomenology of complementary spectra]. Logos: Berlin. 2015. German.
Google Scholar
33
-
Sällstrőm P. On the compatibility of Goethe´s theory of colour with that of Newton. Presentation at the symposium on Goethe´s Farbenlehre. Philosophicum, Basel, 29-30 September, 2017.
Google Scholar
34
-
Rang M, Grebe-Ellis J. Power area density in inverse spectra. Journal for General Philosophy of Science. 2018; 49(4): 515-523.
Google Scholar
35
-
Grebe-Ellis J, Passon O. Goethe´s Farbenlehre from the perspective of modern physics. Dialogue. 2020; 1: 50-59.
Google Scholar
36
-
Vijaya GK. Colour, wavelength and turbidity in the light of Goethe´s colour studies. Journal for General Philosophy of Science. 2020; 51: 569-594.
Google Scholar
37
-
Land EH. Experiments in color vision. Scientific American. 1959; 200: 84-99.
Google Scholar
38
-
Land EH. The retinex theory of color vision. Scientific American. 1977; 237(6): 108-128.
Google Scholar
39
-
Ribe N, Steinle F. Exploratory experimentation: Goethe, Land, and color. Physics Today. 2002; 55(7): 43-49.
Google Scholar
40
-
Brown J. The Land experiments in colour vision. Colour as a physical, phenomenological and synthetic object. MSc. Thesis. University College London. 2022.
Google Scholar
41
-
Aristoteles. De coloribus. In Werke in Deutscher Űbersetzung [On the colors]. Flashar H. (Ed.) Darmstadt: Wissenschaftliche Buchgesselschaft. 1999. Atin.
Google Scholar
42
-
Conrad B. Propositiones physico-mathematicae de flamma iridis, de ortu et interitu flammae, in quibus multa sunt curiose observata. [Physico-mathematical propositions about the flame of the rainbow, about the rise and destruction of the flame, in which there are many curious observations] Olomouc, B2, 1639. (The colors formed in the prismatic spectrum result from mixtures of light and darkness). Latin.
Google Scholar
43
-
Marci JM. Thaumantias, Liber de arcu coelesti, deque colorum apparentium, natura, ortu et causis. [Thaumantias. The book about the celestial arc, and of the visible colors, their nature, origins, and causes] Prague, 1648. (Immutability of colors after the second prism). Latin.
Google Scholar
44
-
Shapiro AE. Newton´s definition of a light ray and the diffusion theories of chromatic dispersion. Isis. 1975; 66(2): 194-220.
Google Scholar
45
-
Nakajima H. Two kinds of modification theory of light: some new observations on the Newton-Hooke controversy of 1672 concerning the nature of light. Annals of Science. 1984; 41(3): 261-278.
Google Scholar
46
-
Guerlac H. Can there be colors in the dark? Physical color theory before Newton. Journal of History of Ideas. 1986; 47(1): 3-20.
Google Scholar
47
-
Steinle F. Newton´s rejection of the modification theory of colour. In: Cohen RS, Wartofsky MW (Eds.): Hegel and the sciences. Dordrecht, Boston, Hingham, MA: D. Reidel. 1994; 64: 547-556.
Google Scholar
48
-
Zemplén G. Newton´s rejection of the modificationist tradition. Form, Zahl. Ordnung: Studien zur Wissenschafts-und Technikgeschichte: Ivo Schneider zum 65. Geburtstag 2004; 48: 481-503.
Google Scholar
49
-
Garben MD. Chymical wonders of light: J. Marcus Marci´s seventeenth-century Bohemian optics. Early Science and Medicine. 2005; 10(4): 478-509.
Google Scholar
50
-
Zemplén GA. The history of vision, colour, & light theories: introductions, texts, problems. Bern Studies in the History and Philosophy of Science. 2005.
Google Scholar
51
-
Müller O. Ultraviolett: Johann Wilhelm Ritters Werk und Goethes Beitrag – zur Geschichte einer Kooperation [Ultraviolet: Johann Wilhelm Ritter´s work and Goethe´s contribution - to the history of a cooperation] Wallstein. 2021. German.
Google Scholar
52
-
Müller O. Goethes und Ritters gemeinsame Reise ins Ultraviolette [Goethe and Ritter´s joint journey into the ultraviolet]. pp. 87-116. In Goethe, Ritter und die Polarität. Klug A, Müller O, Vine T, Yürüyen D, Reinacher A (Eds.) E-Book, ISBN: 978-3-96975-235-7. 2021. German.
Google Scholar
53
-
Stávek J. Chat GPT-4 on the color theory. European Journal of Applied Physics. 2023. This Issue.
Google Scholar
54
-
Descartes R. Oevres de Descartes. Les Meteors. Discours 8; 331-335. Eds. Adam Ch, Tannery P. Paris, 1897-1910. French.
Google Scholar
55
-
Wünsch ChE. Versuche und Beobachtungen über die Farbe des Lichtes. [Experiments and observations on the color of light] Leipzig: Breitkopf, 1792. German.
Google Scholar
56
-
Cloquet JBA. Nouveau traité élémentaire de perspective à l´usage des artistes et des personnes qui s´occupent du dessin: précédé des premières notions de la géometrie élémentaire, de la géométrie descriptive, de l´optique et de la projection des ombres [New elementary treatise on perspective for the use of artists and people who deal with drawing : preceded by the first notions of geometry, descriptive geometry, optics and the projection of shadows]. Paris: Bachelor, 1823. French.
Google Scholar
57
-
Nussbaumer I. Newton´s and Goethe´s prismatic spectra, 2021. https://www.ingonussbaumer.com/permanente-installation-im-romantik-museum-in-frankfurt
Google Scholar
58
-
Müller O. Was hätte Newton auf Goethes Experimente antworten müssen? Ein spectrales Varieté mit Diskussion [How should Newton have responded to Goethe´s experiments? A spectral variety show with discussion]. 2017. https://www.youtube.com/watch?v=e7cUnHD3uR0
Google Scholar
59
-
Rang M. Neue experimentelle Ergebnisse und ihre Beschreibung [New experimental results and their description]. 2018. https://www.youtube.com/watch?v=w9DqTJS-utA
Google Scholar
60
-
Sällstrőm P. Goethe´s purple rays – alias monochromatic rays of shadow, the rehabilitation of darkness [Goethe´s magenta rays – aka monochromatic rays of shadow, the rehabilitation of darkness]. 2018. https://www.youtube.com/watch?v=vu_7uG6KlsU
Google Scholar
61
-
Sällstrőm P. On the compatibility of Goethe´s theory of colour with that of Newtons. 2021. https://www.youtube.com/watch?v=HtXtFbu-t6M
Google Scholar
62
-
Müller O. Magentafarbene Photonen [Magenta photons]. In Goethe, Ritter und die Polarität. Klug A, Müller O, Vine T, Yürüyen D, Reinacher A (Eds.) E-BookI, 2021. p. 297-319.
Google Scholar
63
-
Sällstrőm P. The importance of holistic concepts in colour science. 2022. https://pscolour.eu/English/holistic.htm.
Google Scholar
64
Most read articles by the same author(s)
-
Jiří Stávek,
ChatGPT on the Einstein-Podolsky-Rosen Paradox , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
ChatGPT on the Gravitational Redshift , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
The Newtonian Gravitational Constant G Interpreted as the Gravitational Inertia of Vacuum - G0. How to Arrange Twelve Precise Experimental Determinations of GZ in their Spread 500 ppm? , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
ChatGPT on the Cosmological Redshift and the Hubble Constant , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
Spin Interpreted as the Angular Momentum Curvature, Electron g-factor Interpreted as the Ratio of Toroidal Torsion and Curvature, Unlocking of the Fixed Planck Constant h – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 1 (2021) -
Jiří Stávek,
A New Interpretation of Contributions Presented at the Solvay Conference 1911. Can We Falsify the “Geocentric” Foundations of Quantum Mechanics in the Solar System? , European Journal of Applied Physics: Vol. 3 No. 6 (2021) -
Jiří Stávek,
ChatGPT on the Mathematical Language in Physics , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
The Rydberg Constant Interpreted as the Gaussian Curvature, Gauss-Bohr-de Broglie Model – Two Shadow Projections of the Helix, Unlocking of the Fixed Constant c of the Speed of Light – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
How to Relieve the Hubble Constant Tension? (Earth´s Gravitational Redshift + Earth´s Diurnal Aberration) , European Journal of Applied Physics: Vol. 4 No. 2 (2022) -
Jiří Stávek,
What is Hidden in the Planck Distribution Function and the Wien´s Peaks? III. Fission of Solar Photons into Thermons (“Dark Heat”) , European Journal of Applied Physics: Vol. 5 No. 2 (2023)