##plugins.themes.bootstrap3.article.main##

The Newton´s rotating bucket with gravitational events occurring in that bucket is a starting point for any new model describing gravitational situations and serves as a “filter” for any proposed gravitational model. The topic of this contribution is to describe the self-organization of H2O molecules in the rotating bucket based on the Einstein-Shannon (ES) log-normal distribution of gravitationally redshifted velocities of H2O molecules. The joint co-operation of the Earth´s gravitational field with the centrifugal force acts as that “hidden” organizing agent. H2O molecules transfer the gravitational phonons and reflect them on the surfaces of the wall, bottom, and the water surface of Newton´s bucket and form the 3D paraboloid. Five new experimental predictions are proposed and compared with the experiments. The external observer is unaware that the H2O molecules in Newton´s bucket are phonon velocity-organized due to the Earth´s gravitational redshift and the rotation of Newton´s bucket. The microscopic interplay of gravitational phonons inside of Newton´s bucket is hidden from the macroscopic analysis of the external observers. The external observer claims that these centrifugal forces are fictitious. In order to discover the real actions of those self-organized forces, the observer has to be a part of the rotating system in the presence of the Earth´s gravitational field or to study the rotating system in proposed experiments.  

References

  1. Newton I. Philosophia Naturalis Principia Mathematica Vol.1: The Motion of Bodies, orig. 1686, translated by A. Motte, revised by F. Cajori (University of CA Press, Berkely, 1934), p. 10.
     Google Scholar
  2. Mach E. The Science of Mechanics (Open Court Publishing, London, 1919), p. 232.
     Google Scholar
  3. Einstein A. Gibt es eine Gravitationswirkung die der elektromagnetischen Induktionswirkung analog ist? (Is there a gravitational effect analogous to the electromagnetic effect?). Vierteljahrschrift für gerichtliche Medizin 1912;44(3): 37-40.
     Google Scholar
  4. Sciama DW. On the origin of inertia. Monthly Notices of Royal Astronomy Society. 1953; 113: 34-42.
     Google Scholar
  5. Misner CW, Thorne KS, Wheeler JA. Gravitation. 1973. Freeman. New York.
     Google Scholar
  6. Barbour JB. Forceless Machian dynamics. Il Nuovo Cemento. 1975; 26 B: 16-22.
     Google Scholar
  7. Cook RJ. Is gravitation a result of Mach´s inertial interaction? Il Nuovo Cimento. 1976; 35 B: 25-34.
     Google Scholar
  8. Barbour J, Pfister H. (Eds.) Mach´s Principle: From Newton´s Bucket to Quantum Gravity. Einstein Studies Vol. 6, Birkhäuser, Boston, 1995.
     Google Scholar
  9. Ciufolini I, Wheeler JA. Gravitation and Inertia. 1995. Princeton University Press.
     Google Scholar
  10. Greene B. The Universe and the Bucket. Chapter 2 In: The Fabric of the Cosmos: space, Time, and the Texture of Reality. 2005; Vintage, ISBN-10: 0375727205.
     Google Scholar
  11. Bičák J, Katz J, Lynde-Bell D. Cosmological perturbation theory, instantaneous gauges and local inertial frames. Phys. Rev. D. 2007; 76: 063501.
     Google Scholar
  12. Staley R. Ernst Mach on bodies and buckets. Physics Today. 2013; 66: 42-47.
     Google Scholar
  13. Shuler R. A fresh spin on Newton´s bucket. Physics Education. 2014; 50(1): 88.
     Google Scholar
  14. Assis AKT. Relational Mechanics. 2014; C. Roy Keys Inc. https://www.ifi.unicamp.br/~assis/Relational-Mechanics-Mach-Weber.pdf.
     Google Scholar
  15. Assis AKT. Empedocles, Newton, the centrifugal force and their bucket experiments. Apeiron. 2017; 20: 84-96.
     Google Scholar
  16. Patton L. New water in old buckets: hypothetical and counterfactual reasoning in Mach´s economy of science. Chapter 26 in Ernst Mach – Life, Work, Influence, 2018. Vienna Circle Institute. doi.org/10.1007/978-3-030-04378-0_26.
     Google Scholar
  17. Vatistas GH, Wang H, Lin J. Experiments on waves induced in the hollow core of vortices. Exp. Fluids. 1992; 13: 377-385.
     Google Scholar
  18. Jansson TRN, Haspang MR, Jensen MR, Hersen P, Bohr T. Polygons on a rotating fluid surface. Phys. Rev. Lett. 2006; 96: 174502.
     Google Scholar
  19. Šabatka Z, Dvořák I. Simple verification of the parabolic shape of a rotating liquid and a boat on its surface. Physics Education 2010; 45(5): 462-468.
     Google Scholar
  20. Mungan CE, Lipscombe TC. Newton´s rotating water bucket: a simple model. Journal Washington Academy of Sciences, Washington D.C. 2013; 99 (Summer): 15-24.
     Google Scholar
  21. Bach B, Linnartz EC, Vested MH, Andersen A, Bohr T. From Newton´s bucket to rotating polygons: experiments on surface instabilities in swirling flows. J. Fluid. Mech. 2014; 759: 386-403.
     Google Scholar
  22. Mougel J, Fabre D, Lacaze L. Waves in Newton´s bucket. J. Fluid Mech. 2015; 783: 211-250.
     Google Scholar
  23. Mougel J, Fabre D, Lacaze L, Bohr T. On the instabilities of a potential vortex with a free surface. J. Fluid Mech. 2017; 824: 230-264.
     Google Scholar
  24. Yan Z, Sun L, Xiao J, Lan Y. The profile of an oil-water interface in a spin-up rotating cylindrical vessel. American Journal of Physics. 2017; 85: 271-276.
     Google Scholar
  25. Bach JS, Duchesne A, Bohr T. Shape dynamics of rotating polygons on the surface of liquid nitrogen in a Leidenfrost state. Comptes Rendus Méchanique. 2020; 348: 457-473.
     Google Scholar
  26. Tasaka Y, Iima M. Surface switching statistics of rotating fluid: disk-rim gap effects. Physical Review E. 2017; 95: 043113.
     Google Scholar
  27. Bucket argument: https://en.wikipedia.org/wiki/Bucket_argument (accessed on February 07 2022).
     Google Scholar
  28. Evans WC. Newton´s bucket. https://www.geogebra.org/m/mhhsqnpb (an interacting applet, accessed 07 February 2022).
     Google Scholar
  29. Stávek J. The ES log-normal distribution determined by the Einstein median as the scale parameter and the Shannon shape parameter. European Journal of Applied Physics. 2022; 4(1): 60-70. http://dx.doi.org/10.24018/ejphysics.2022.4.1.149.
     Google Scholar
  30. Wu Z, Li J, Bai Ch. Scaling relations of lognormal type growth process with an extremal principle of entropy. Entropy. 2017; 19(56): 1-14.
     Google Scholar
  31. Underwater acoustics. https://en.wikipedia.org/wiki/Underwater_acoustics (accessed on February 08 2022).
     Google Scholar
  32. Jensen FB, Kuperman WA, Porter MB, Schmidt H. Computational Ocean Acoustics. 1994; (AIP Press, NY).
     Google Scholar
  33. Tolstoy A, Shang Ech, Teng YCh. (Eds.). Theoretical and Computational Acoustics. 2005; World Scientific Publishing Co., Singapore. ISBN: 981-270-084-6.
     Google Scholar
  34. Artuković RM, Marušić M. Water leakage from the rotating cylindrical tank. The Physics Teacher. 2021; 59: 234-236.
     Google Scholar
  35. Mehta A, Choudhary D. Rotating Newtonian fluid in a non-inertial frame of reference. International Journal of Physics and Research. 2021; 11(2): 25-42.
     Google Scholar
  36. Kündig W. Measurement of the transverse Doppler effect in an accelerated system. The Physical Review. 1963; 129(6): 2371-2375.
     Google Scholar
  37. Kholmetskii AL, Yarman T, Missevitch OV. Kündig´s experiment on the transverse Doppler shift re-analyzed. Physica Scripta. 2008; 77: 035302 (5pp).
     Google Scholar
  38. Kholmetskii AL, Yarman T, Missevitch OV, Rogozev BI. A Mössbauer experiment in a rotating system on the second-order Doppler shift: confirmation of the corrected result by Kündig. Physica Scripta. 2009; 79: 065007 (6 pp).
     Google Scholar
  39. Yarman T, Kholmetskii AL, Arik M, Akkus B, Öktem Y, Susam LA, Missevitch OV. Novel Mössbauer experiment in a rotating system and the extra-energy between emission and absorption lines. Canadian Journal of Physics. 2015; 94(8): doi:10.1139/cjp-2015-0063.
     Google Scholar
  40. Corda Ch. The YARK theory of gravity is completely ruled out by the Mössbauer rotor experiment. New Advances in Physics. 2019; 13(1): 13-22.
     Google Scholar
  41. Corda Ch. Mössbauer rotor experiment as new proof of general relativity: Rigorous computation of the additional effect of clock synchronization. International Journal of Modern Physics D. 2019; 28(10): doi.org/10.1142/S0218271819501311.
     Google Scholar
  42. Kholmetskii AL, Yarman T, Yarman O, Arik M. Doppler effect in rotating systems and Mössbauer rotor experiments. Annals of Physics. 2021; 432: 168568.
     Google Scholar
  43. Foukzon J. Comment on “Analysis of Mössbauer experiments in a rotating system: proper and improper approaches” [Annals of Physics Volume 418, July 2020, 168191]. Journal of High Energy Physics, Gravitation and Cosmology. 2021; 7: 416-444.
     Google Scholar
  44. Friedman Y, Nowik I. Testing Einstein´s time dilation under aceleration using Mössbauer spectroscopy. Physica Scripta. 2012; doi:10.1088/0031-8949/85/06/065702.
     Google Scholar
  45. Corda C. Interpretation of Mössbauer experiment in a rotating system: a new proof for general relativity. Annals of Physics. 2015; 355: 360-366. DOI: 10.1016/j.aop.2015.02.021.
     Google Scholar
  46. Friedman Y, Nowik I, Felner I, Steiner JM, Yudkin E, Livshitz S, et al. Advances in testing the effect of acceleration on time dilation using a synchrotron Mössbauer source. Journal of Synchrotron Radiation. 2017; 24(3): 661-666. DOI: 10.1107/S1600577517002405.
     Google Scholar
  47. Friedman Y, Steiner JM, Livshitz S, Perez E, Nowik I, Felner I, et al. The validity of an experiment testing the influence of acceleration on time dilation using a rotating Mössbauer absorber and a synchrotron Mössbauer source. Journal of Synchrotron Radiation. 2019; 26(2): 473-482. Doi:10.1107/S1600577519000857.
     Google Scholar
  48. Kholmetskii AL, Yarman T, Yarman O, Arik M. Mössbauer experiments in a rotating system and physical interpretation of their results. Journal of the Belarusian State University. Physics. 2021; 2: 34-43.
     Google Scholar
  49. Gasco E. The concept of relativity in Mach. In Philpapers: https://philpapers.org/rec/GASTCO-5 (accessed on February 09 2022).
     Google Scholar
  50. Hartman HL, Nissim-Sabat Ch. On Mach´s critique of Newton and Copernicus. Arxiv: https://arxiv.org/ftp/astro-ph/papers/0311/0311464.pdf (visited on February 09 2022).
     Google Scholar


Most read articles by the same author(s)

1 2 3 > >>