What is Hidden in the Planck Distribution Function and the Wien´s Peaks? I. Three Features of the Solar Photons
Article Main Content
There were derived many forms of the Planck distribution function (PDF) since its discovery by Planck in 1900 and formulae for the positions of Wien´s peaks in those distributions. There are three features of the Solar photons – their refrangibility, their heat effect, and their chemical effect. The first feature – their refrangibility – can be modelled using the linear-wavelength dispersion rule for spectrometers with diffraction gratings and using the frequency-square rule for spectrometers with prisms. However, there are no accepted forms of the PDF to model heat effect of the Solar photons on atoms and molecules, and to model the effect of the PDF on chemical reactions where the Solar photons play very significant role. We have summarized the known forms of the PDF and positions of Wien´s peaks in order to search some hidden properties in those mathematical structures. It will be shown that these very well-known formulae to all scholars might still keep some hidden surprising properties.
References
-
Wien W. Eine neue Beziehung der Strahlung schwarzer Körper zum zweiten Hauptsatz der Wärmetheorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin. 1893; S. 55. German.
Google Scholar
1
-
Wien W. Űber die Energievertheilung im Emissionspectrum eines schwarzen Körpers. Annalen der Physik und Chemie. 1896; 294(8): 662-669. German.
Google Scholar
2
-
Planck M. Űber eine Verbesserung der Wien´schen Spectralgleichung. Verhandlungen der Deutschen Physikalischen Gesselschaft. 1900; 2: 202-204. German.
Google Scholar
3
-
Einstein A. Űber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik. 1905; 17: 164-181. German.
Google Scholar
4
-
Nernst W. (Editor). Die Theorie der Strahlung und der Quanten. Verhandlungen auf einer von E. Solvay einberufenen Zusammenkunft (30. Oktober bis 3. November 1911). Knapp Verlag, Halle a.S., 1914. German.
Google Scholar
5
-
Kangro H. Vorgeschichte des Plankschen Strahlungsgesetzes. Messungen und Theorien der Spektralen Energieverteilung bis zur Begründung der Quantenhypothese. Franz Steiner Verlag, Wiesbaden, 1970. German.
Google Scholar
6
-
Kuhn TS. Black-body theory and the quantum discontinuity, 1894-1912. The University Chicago Press, 1978.
Google Scholar
7
-
Gershun AA. On the spectral density of radiation. Uspekhi Fizicheskich Nauk. 1952; (3): 388-395. Russian.
Google Scholar
8
-
Foitzik L. Űber die Darstellung der spektkralen Energieverteilung von Strahlungsquellen. Experimentelle Technik der Physik. 1953; 1953(4/5): 209-213. German.
Google Scholar
9
-
Bracewell RN. The maximum of the Planck energy spectrum. Nature (London). 1954; 4429: 563-564.
Google Scholar
10
-
Gurevich MM. On the spectral distribution of radiant energy. Uspekhi Fizicheskikh Nauk. 1955; 56(3): 417-424.
Google Scholar
11
-
Sapozhnikov RA. Spectral distribution of radiant energy. Soviet Physics Uspekhi. 1960; 3(1): 172-174.
Google Scholar
12
-
Chiu WC. On the interpretation of the energy spectrum. American Journal of Physics. 1967; 35(7): 642-648.
Google Scholar
13
-
Soffer BH, Lynch DK. Some paradoxes, errors, and resolutions concerning the spectral optimization of human vision. American Journal of Physics, 1999; 67(11): 946-953.
Google Scholar
14
-
Overduin JM. Eyesight and the Solar Wien peak. American Journal of Physics, 2003; 71(3): 216-219.
Google Scholar
15
-
Heald MA. Where is the „Wien peak“? American Journal of Physics, 2003; 71(12): 1322-1323.
Google Scholar
16
-
Kramm G, Mölders N. Planck´s blackbody radiation law: presentation in different domains and determination of the rrelated dimensional constants. Arxiv: 0901.1863v2.
Google Scholar
17
-
Zhang ZM, Wang XJ. Unified Wien´s displacement law in terms of logarithmic frequency or wavelength scale. Journal of Thermophysics and Heat Transfer. 2010; 24(1): 222-224.
Google Scholar
18
-
Stewart SM. Wien peaks and the Lambert W function. Revista Brasileira de Ensimo de Física. 2011; 33(3): 3308.
Google Scholar
19
-
Stewart SM. Spectral peaks and Wien´s displacement law. Journal of Thermophysics ad Heat Transfer. 2012; 26(4): 689-691.
Google Scholar
20
-
Marr JM, Wilkin FP. A better presentation of Planck´s radiation law. Arxiv: 1109.3822v3.
Google Scholar
21
-
Deldago-Bonal A. Entropy of radiation: the unseen side of light. Scientific Reports. 2017; 7: 1642.
Google Scholar
22
-
Hagen N. Spectra, images, simple functions, and density functions. 2021 11th Workshop on hyperspectral imaging and signal processing: evolution in remote sensing (WHISPERS), Amsterdam, Netherlands, 2021, pp. 1-5.
Google Scholar
23
-
Kostić L, Mančev I. Lambert W function ad different forms of Wien´s displacement law. Romanian Reports in Physics. 2021; 73: 906.
Google Scholar
24
-
Calculation of blackbody radiance. Arxiv: 2108.03119. Last accessed Janaury 24, 2023.
Google Scholar
25
-
Gnanarajan S. Application of Lambert W function to Planck spectral radiance frequencies. Journal of Applied Mathematics and Physics, 2021; 9: 2500-2510.
Google Scholar
26
-
Marcus Marci J. Thaumantias, Liber de arcu coelesti, deque colorum apparentium, natura, ortu et causis. Prague 1648; reproduced 1968. Latin.
Google Scholar
27
-
Marek J. Marcus Marci´s results in the optics of radiation. In Joannes Marcus Marci – A seventeenth-century Bohemian polymath, Svobodny P. (Ed.), Charles University Press, Prague; 1998. ISBN 80-7184-475-6.
Google Scholar
28
-
Garber MD. Chymical wonders of light: J. Marcus Marci´s seventeenth-century Bohemian optics. Early Science and Medicine, 2005; 10(4): 486-518.
Google Scholar
29
-
Newton I. Optics or a treatise of the reflections, refractions, inflections, & colours of light. Dover Publications, 2014.
Google Scholar
30
-
Westfall RS. The development of Newton´s theory of color. Isis. 1962; 53(3): 339-358.
Google Scholar
31
-
Rochon AM. (1783). Sur la degré de chaleur des rayons colorés. English trans. An essay on the degree of warmth of coloured rays. Philosophical Magazine. 45: 410-414.
Google Scholar
32
-
Wünsch CE. Versuche über die vermeinte Sonderung des Lichtes der Sonnenstrahlen von der Wärme derselben. Magazin der Gesselschaft Naturforschende Freunde zu Berlin. 1807; 185-207. German
Google Scholar
33
-
Seebeck TJ. Ueber die ungleiche Erregung der Wärme im prismatischen Sonnebilde. Abhandlungen der königlichen Akademie der Wissenschaften in Berlin aus den Jahren 1818-1819. Berlin, 1820, pp. 305-350. German.
Google Scholar
34
-
Seebeck TJ. On the unequal evolution of heat in the prismatic spectrum. Philosophical Magazine. 1825; 66: 330-343, 445-455.
Google Scholar
35
-
Cornell ES. The radiant heat spectrum from Herschel to Melloni I. The work of Herschel and his contemporaries. Annals of Science. 1938; 3: 119-137.
Google Scholar
36
-
Cornell ES. The radiant heat spectrum from Herschel to Melloni II. The work of Melloni and his contemporaries. Annals of Science. 1938; 3: 402-413.
Google Scholar
37
-
Barr ES. Historical survey of the early development on the infrared spectral region. American Journal of Physics. 1960; 28: 42-54.
Google Scholar
38
-
Barr ES. The infrared pioneers – I. Sir William Herschel. Infrared Physics. 1961; 1: 1-10.
Google Scholar
39
-
Hentschel K. Mapping the spectrum. Techniques of visual representation in research and teaching. Oxford University Press, Oxford, 2009, Ch. 2, pp. 21-72.
Google Scholar
40
-
Herschel W. Investigations of the powers of the prismatic colours to heat and illuminate objects; with remarks that prove the different refrangibility of radiant heat. Philosophical Transactions of the Royal Society, London. 1800; pp. 255-283, 284-292, 293-326, 437-538.
Google Scholar
41
-
Lowell DJ. Herschel´s dilemma in the interpretation of thermal radiation. Isis. 1968; 59(1): 46-60.
Google Scholar
42
-
Hilbert M. Herschel´s investigation of the Nature of radiant heat: the limitations of experiment. Annals of Science. 199; 56: 357-378.
Google Scholar
43
-
Minkina W. How infrared radiation was discovered – range of this discovery and detailed, unknown information. Applied Sciences. 2021; 11: 9824.
Google Scholar
44
-
Kangro H. Vorgeschichte des Plankschen Strahlungsgesetzes. Messungen und Theorien der Spektralen Energieverteilung bis zur Begründung der Quantenhypothese. Franz Steiner Verlag, Wiesbaden, 1970. German. pp. 23-26.
Google Scholar
45
-
Ghosh G. Handbook of Refractive Index and Dispersion of Water for Scientists and Engineers: Optic and Pressure-Optic Coefficients of Water. Independent Publisher; 2021.
Google Scholar
46
-
Wikipedia.org Refractive index. Available from https://en.wikipedia.org/wiki/Refractive_index [updated 2022 December 22; cited 2023 January 22].
Google Scholar
47
-
Chang SL, Rhee KT. Blackbody radiation functions. International Communications in Heat and Mass Transfer. 1984; 11(5): 451-455.
Google Scholar
48
-
Jain PK. IR, visible, and UV components in the spectral distribution of blackbody radiation. Physics Education, 1996; 31:149-155.
Google Scholar
49
-
Lawson D. A closer look at Planck´s blackbody equation. Physics Education. 1997; 35(5): 321-326.
Google Scholar
50
-
Lawson DL. The blackbody fraction, infinite series and spreadsheets. International Journal of Engineering Education. 2004; 20(6): 984-900.
Google Scholar
51
-
Ritter JW. Am 22sten Februar (Discovery of UV light). Annalen der Physik. 1801; 7, 527. German.
Google Scholar
52
-
Link HF. Ueber die chemischen Eigenschaften des Licht: Versuch einer Beantwortung der von Kaiserlichen Akademie der Wissenschaften zu Petersburg aufgeworfenen Frage. St. Petersburg: Kaiserliche Akademie der Wissenschaften.1808. German.
Google Scholar
53
-
Hentschel K. Unsichtbares Licht? Dunkle Wärme? Chemische Strahlen? Eine wissenschaftshistorische und -theoretische Analyse von Argumenten für das Klassifizieren von Strahlungsorten 1650-1925 mit Schwerpunkt auf den Jahren 1770-1900. GNT-Verlag GmbH, 2007. ISBN-10: 3928186841. German.
Google Scholar
54
-
Frercks J, Weber H, Wiesenfeldt G. Reception and Discovery: the nature of Johann Willhelm Ritter´s invisible rays. Studies in History and Philosophy of Science. 2009; 40: 143-156.
Google Scholar
55
-
Balzani V, Ceroni P, Juris A. Photochemistry and Photophysics: concepts, research, applications. Wiley-CH. 2014. ISBN-10: 9783527334797.
Google Scholar
56
-
Albini A. Photochemistry: past, present and future. Springer. 2016. ISBN-10: 3662507811
Google Scholar
57
-
Persico M, Granucci G. Photochemistry: A modern theoretical perspective (Theoretical chemistry and computational modelling). Springer. 2019. ISBN-10: 3030079066.
Google Scholar
58
Similar Articles
- Jiří Stávek, What is Hidden in the Planck Distribution Function and the Wien´s Peaks? III. Fission of Solar Photons into Thermons (“Dark Heat”) , European Journal of Applied Physics: Vol. 5 No. 2 (2023)
- Jiří Stávek, What is Hidden in the Planck Distribution Function and the Wien´s Peaks? II. Do Atoms Fuse Solar Photons into Gravitons? , European Journal of Applied Physics: Vol. 5 No. 2 (2023)
- Jiří Stávek, The Element of Physical Reality Hidden in the Letter of Malus to Lancret in 1800 can Solve the EPR Paradox (Malus Thermochromatic Loophole) , European Journal of Applied Physics: Vol. 5 No. 6 (2023)
- Jiří Stávek, The Descartes Code (Spin Orbital Rotation of Photons)–II. The Gravitational Redshift , European Journal of Applied Physics: Vol. 6 No. 1 (2024)
- Jiří Stávek, The Newton-Stefan-Boltzmann-Planck Code. The Solar Microwave Background Formation on the Blackbody Sphere at the Distance R = 140 AU , European Journal of Applied Physics: Vol. 6 No. 2 (2024)
- Jiří Stávek, ChatGPT on the Einstein-Podolsky-Rosen Paradox , European Journal of Applied Physics: Vol. 5 No. 6 (2023)
- Jiří Stávek, The Descartes Code (Spin Orbital Rotation of Photons)–IV. The Harress-Sagnac Color Excess in the Rotation Curves of Galaxies , European Journal of Applied Physics: Vol. 6 No. 2 (2024)
- Duke Ateyh Oeba, Cliff Orori Mosiori, Influence of Bulk Defect Density in CIGS on the Efficiency of Copper Indium Gallium Selenide Photocell , European Journal of Applied Physics: Vol. 6 No. 6 (2024)
- Farhad Vedad, Modeling Gravitational Lensing: Analyzing Light Deflection Through a Curved Atmospheric Layer , European Journal of Applied Physics: Vol. 7 No. 2 (2025)
- Reginald B. Little, Relativistic Chiral Inversion of Non-Zero Nuclear Magnetic Moments During Centrifugal Industrial Fermentative Processes , European Journal of Applied Physics: Vol. 5 No. 6 (2023)
1-10 of 114
Next
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
-
Jiří Stávek,
ChatGPT on the Sagnac Effect , European Journal of Applied Physics: Vol. 6 No. 2 (2024) -
Jiří Stávek,
What is Hidden in the Planck Distribution Function and the Wien´s Peaks? II. Do Atoms Fuse Solar Photons into Gravitons? , European Journal of Applied Physics: Vol. 5 No. 2 (2023) -
Jiří Stávek,
What is Hidden in the Planck Distribution Function and the Wien´s Peaks? III. Fission of Solar Photons into Thermons (“Dark Heat”) , European Journal of Applied Physics: Vol. 5 No. 2 (2023) -
Jiří Stávek,
How to Interpret Gravitational Events in the Gravity Probe B Mission? (Gravitational Phonons and Gravitational Deformation Potential) , European Journal of Applied Physics: Vol. 4 No. 2 (2022) -
Jiří Stávek,
The Descartes Code (Spin Orbital Rotation of Photons)–III. The Cosmological Redshift and the Hubble Constant , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiri Stavek,
The Rutherford-Harkins-Landau-Chadwick Key–II. Fusion Interpreted by Nuclear Chemistry , European Journal of Applied Physics: Vol. 7 No. 1 (2025) -
Jiří Stavek,
Towards Reconciliation and Collaboration: Bridging Low Energy Nuclear Reactions and Mainstream Nuclear Physics , European Journal of Applied Physics: Vol. 7 No. 2 (2025) -
Jiří Stávek,
The Rutherford-Harkins-Landau-Chadwick Key–VI. A Proposal for the Reproducible and Irrefutable Cold Fusion Reaction , European Journal of Applied Physics: Vol. 7 No. 2 (2025) -
Jiří Stávek,
The Descartes Code (Spin Orbital Rotation of Photons)–IV. The Harress-Sagnac Color Excess in the Rotation Curves of Galaxies , European Journal of Applied Physics: Vol. 6 No. 2 (2024) -
Jiří Stávek,
The ES Log-normal Distribution Determined by the Einstein Median as the Scale Parameter and the Shannon Shape Parameter , European Journal of Applied Physics: Vol. 4 No. 1 (2022)