The ES Log-normal Distribution Determined by the Einstein Median as the Scale Parameter and the Shannon Shape Parameter
##plugins.themes.bootstrap3.article.main##
The guiding principle of this contribution is the mutual interplay between the Solar gravitational field and the Maxwell-Boltzmann distribution of speeds of atoms and the observed Fraunhofer lines. We know from numerous experiments that the Newtonian gravitational constant does not depend on the atomic mass, temperature, pressure and many other particle parameters. Therefore, we should discover a universal distribution function that could be used for all atoms and their properties for a given gravitational field. We have introduced the ES log-normal distribution fully determined by the Einstein median as the scale parameter and the Shannon shape parameter σ = 1/√6. Shannon formulated this shape parameter for the log-normal distribution describing systems with the maximum entropy formation. This ES log-normal distribution function determines the most effective mutual interactions between the gravitational field and the Maxwell-Boltzmann particles. In order to make the Einstein median formula more general, we have introduced the model of the active solid angle of the source of gravity with values 1 ≤ Ω ≤ 4 steradians. We have tested this ES log-normal distribution with three datasets measured on the Solar disc and two datasets measured on the surface of the Earth using the Mössbauer effect. There were predicted some new properties of those datasets. This model might stimulate and promote new initiatives to collect new better datasets for the Solar disc and the Mössbauer effect.
References
-
Jewell LE. The coincidence of Solar and metallic lines. A study of the appearance of lines in the spectra of the electric arc and the Sun. The Astrophysical Journal. 1896; 3: 89-113.
Google Scholar
1
-
Hentschel K. The Discovery of the redshift of Solar Fraunhofer lines by Rowland and Jewell in Baltimore around 1890. Historical Studies in the Physical and Biological Sciences. 1993; 23: 219-277.
Google Scholar
2
-
Halm J. Über eine bisher unbekannte Verschiebung der Fraunhoferschen Linien des Sonnesspectrums. (About a hitherto unknown shift of the Fraunhofer lines of the Solar spectrum). Astronomische Nachrichten. 1907; 173: 18-287.
Google Scholar
3
-
Gonzáles Hernández JI et al. The Solar gravitational redshift from HARPS-LFC Moon spectra. Astronomy & Astrophysics. 2020; 643: A146.
Google Scholar
4
-
Einstein A. Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. (On the principle of relativity and the conclusions drawn from it). Jahrbuch für die Radioaktivität und Elektronik. 1907; 4: 411-462.
Google Scholar
5
-
Einstein A. Über den Einflusss der Schwerkraft auf die Ausbreitung des Lichtes (On the influence of gravitation on the propagation of light). Annalen der Physik. 1911; 340: 898-908.
Google Scholar
6
-
Einstein A. Die Grundlagen der allgemeinen Relativitätstheorie. Annalen der Physik, Series 4. 1916; 35: 115-185.
Google Scholar
7
-
Glaser LC. Die Einsteinsche Relativitätstheorie und die Rotverschiebung der Fraunhoferschen Linien. (The Einstein´s theory of relativity and the redshift of Fraunhofer lines). Jahrbuch der Radioktivität und Elektronik. 1923; 20(4): 277-352.
Google Scholar
8
-
Forbes EG. The problem of the Solar redshifts. PhD Thesis. 1961; http://hdl.handle.net/10023/14628.
Google Scholar
9
-
Brault JW. The gravitational redshift in the Solar spectrum. PhD. Thesis. Princeton University. 1962.
Google Scholar
10
-
Forbes EG. A history of the solar redshift problem. Annals of Science. 1963; 17(3): 129-164.
Google Scholar
11
-
Earman J, Glymour C. The gravitational redshift as a test of general relativity: history and analysis. Studies in History and Philosophy of Science. 1980; 11: 251-278.
Google Scholar
12
-
Hentschel K. The conversion of St. John – a case of study on the interplay of theory and experiment. Science in Context. 1993; 6(1): 137-194.
Google Scholar
13
-
Hentschel K. Erwin Finlay Freundlich, Albert Einstein, and experimental tests of the general theory of relativity. Archive for History of Exact Sciences. 1994; 47(2): 143-201.
Google Scholar
14
-
Hentschel K. Measurements of gravitational redshifts between 1959 and 1971. Annals of Science. 1996; 53: 269-295.
Google Scholar
15
-
Hentschel K. The interplay of instrumentation, experiment, and theory: patterns emerging from case studies on Solar redshift, 1890-1960. Philosophy of Science. 1997; S53-S64.
Google Scholar
16
-
Hentschel K. Zum Zusammenspiel von Instrument, Experiment und Theorie. Rotverschiebung im Sonnenspektrum und verwandte spektrale Verschiebungseffekte von 1880 bis 1960. (On the interplay of instrumentation, experiment, and theory. Redshift in the solar spectrum and related spectral shift effects from 1880 to 1960). 1998. Verlag Dr. Kovac. ISBN-10: 386064730X.
Google Scholar
17
-
Creliston J. Einstein´s jury. The race to test relativity. 2006; Princeton University Press, Princeton.
Google Scholar
18
-
Treschmann KJ. Early astronomical tests of general relativity: the anomalous advance in the perihelion of Mercury and gravitational redshift. Asian Journal of Physics. 2014; 23(1&2): 171-188.
Google Scholar
19
-
FitzGerald GF. Note on the cause for the shift of spectral lines. The Astrophysical Journal. 1897; 5: 210-211.
Google Scholar
20
-
Blamont JE, Rodier F. Precise observation of the profile of the Frauhofer strontium resonance line. Evidence for the gravitational red shift on the Sun. Phys. Rev. Lett. 1961; 7(12): 437-439.
Google Scholar
21
-
Snider JL. Atomic-beam study of the solar 7699 Å potassium line and the Solar gravitational red-shift. Solar Physics. 1970; 12: 352-369.
Google Scholar
22
-
Snider JL. New measurement of the Solar gravitational red shift. Phys. Rev. Lett. 1972; 28(13): 853-856.
Google Scholar
23
-
Beckers JM. Material motion in sunspot umbrae. The Astrophysical Journal. 1977; 213: 900-905.
Google Scholar
24
-
LoPresto JC, Chapman RD., Sturgis EA. Solar gravitational redshift. Solar Physics. 1980; 66: 245-249.
Google Scholar
25
-
LoPresto JC, Schrader Ch, Pierce AK. Solar gravitational redshift from the infrared oxygen triplet. The Astrophysical Journal. 1991; 376: 757-760.
Google Scholar
26
-
Allende Prieto C, García lópez RJ. Fe I line shifts in the optical spectrum of the Sun. Astronomy & Astrophysics. Suppl. Ser. 1998; 129: 41-44.
Google Scholar
27
-
Molaro P, Monai S. Solar atlas revised. Astronomy & Astrophysics. 2012; 544: A125.
Google Scholar
28
-
Takeda Y, Ueno S. Detection of gravitational redshift on the Solar disk by using iodine-cell technique. Solar Physics. 2012; 281: 551-575.
Google Scholar
29
-
Roca Cortés T, Pallé PL. The Mark-I helioseismic experiment – I. Measurements of the Solar gravitational redshift (1976-2013). Monthly Notices of the Royal Astronomical Society. 2014; 443: 1837-1848.
Google Scholar
30
-
Grebe L, Bachem A. Über die Einsteinverschiebung im Gravitationsfeld der Sonne. (On the Einstein shift in the gravitational field of the Sun). Zeitschrift für Physik. 1920; 1: 51-54.
Google Scholar
31
-
Grebe L, Bachem A. Die Einsteinsche Gravitationsverschiebung im Sonnenspektrum der Stickstoffbande λ = 3883 AE. (On the Einstein gravitational shift in the Solar spectrum of the nitrogen band λ = 3883 AE). Zeitschrift für Physik. 1920; 2: 415-422.
Google Scholar
32
-
Hentschel K. Grebe/Bachems photometrische Analyse der Linienprofile und die Gravitations-Rotverschiebung: 1919 bis 1922. (Grebe/Bachem´s photometric analysis of the line profile and the gravitational redshift: 1919 to 1922). Annals of Science. 1992; 49: 21-46.
Google Scholar
33
-
St. John CE. Evidence for the gravitational displacement of lines in the Solar spectrum predicted by Einstein´s theory. The Astrophysical Journal. 1928; 67: 195-239.
Google Scholar
34
-
Adams WS. An investigation of the displacements of the spectrum lines at the Sun´s limb. The Astrophysical Journal. 1910; 31: 30-61.
Google Scholar
35
-
Wiechert E. Die Gravitation als elektromagnetische Erscheinung. (Gravity as an electrodynamic phenomenon). Annalen der Physik. 1920; 63: 301-381, page 320.
Google Scholar
36
-
Wu Z, Li J, Bai Ch. Scaling relations of lognormal type growth process with an extremal principle of entropy. Entropy. 2017; 19(56): 1-14.
Google Scholar
37
-
Cranshaw TE, Schiffer JP. Measurement of the gravitational red shift with the Mössbauer effect. Proc. Phys. Soc. 1964; 84: 245-256.
Google Scholar
38
-
Pound RV, Rebka GA. Apparent weight of photons. Physical Review Letters. 1960; 4: 337-341. Table I.
Google Scholar
39
-
Pound RV, Snider JL. Effect of gravity on gamma radiation. Physical Review. 1965; 140 (3B): B788-B804. page B802.
Google Scholar
40
-
Vessot RFC et al. Test of relativistic gravitation with a space-borne hydrogen maser. Physical Review Letters. 1980; 45: 2081-2084.
Google Scholar
41
-
Ashby N. Relativity in the global positioning system. Living Reviews in Relativity. 2003; 6: 1.
Google Scholar
42
-
Will CM. The confrontation between general relativity and experiment. Living Reviews in Relativity. 2014;17(1): 4.
Google Scholar
43
-
Herrmann S. et al. Test of gravitational redshift with Galileo Satellites in an eccentric orbit. Physical Review Letters. 2018; 121: 231102.
Google Scholar
44
-
Takamato M. et al. Test of general relativity by a pair of transportable optical lattice clocks. Nature Photonics. 2020; 14: 411-415.
Google Scholar
45
-
Qin Ch, Tan Y, Shao ChG. Test of Einstein equivalence principle by frequency comparisons of optical clocks. Physics Letters B. 2021; 820: 136471.
Google Scholar
46
-
Sagitov MU. Current status of determinations of the gravitational constant and the mass of the Earth. Soviet Astronomy. 1970; 13:712-718.
Google Scholar
47
-
Gillies GT. The Newtonian gravitational constant: an index of measurements. Bureau International des Poids et Measureres, France. 1982.
Google Scholar
48
-
Gillies GT. The Newtonian gravitational constant: recent measurements and related studies. Rep. Prog. Phys. 1997; 60: 151-225.
Google Scholar
49
-
Luo J, Hu ZK. Status of measurement of the Newtonian gravitational constant. Class. Quantum Grav. 2000; 17: 2351-2363.
Google Scholar
50
-
Milyukov VK, Luo J, Tao Ch. Mironov AP. Status of the experiments on measurement of the Newtonian gravitational constant. Gravitation and Cosmology. 2008; 14: 368-375.
Google Scholar
51
-
Milyukov V, Fan SH. The Newtonian gravitational constant: modern status of measurement and the new CODATA value. Gravitation and Cosmology. 2012; 18: 216-224.
Google Scholar
52
-
Quinn T, Speake C. The Newtonian constant of gravitation, a constant too difficult to measure? 13 contributions to a Theo Murphy Meeting Issue. Phil. Trans. R. Soc. 2014; A 372.
Google Scholar
53
-
Schlamminger S, Gundlach JH, Newman RD. Recent measurements of the gravitational constant as a function of time. Phys. Rev. D. 2015; 91: 121101R.
Google Scholar
54
-
Rothleitner C, Schlamminger S. Invited review article: measurement of the Newtonian constant of gravitation G. Rev. Sci. Instrum. 2017; 88: 11110-1-111101-27.
Google Scholar
55
-
Wu J. et al. Progress in precise measurements of the gravitational constant. Annalen der Physik. 2019; 531: 1900013 (1-14).
Google Scholar
56
-
Xue C. et al. Precision measurement of the Newtonian gravitational constant. National Science Review. 2020; 12(7): 1803-1817.
Google Scholar
57
-
Dai DC. Variance of Newtonian constant from local gravitational acceleration measurements. Arxiv: 2103.11157v1. 2021.
Google Scholar
58
-
Quinn T. Don´t stop the quest to measure Big G. Nature. 2014; 505: 455.
Google Scholar
59
Most read articles by the same author(s)
-
Jiří Stávek,
ChatGPT on the Einstein-Podolsky-Rosen Paradox , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
ChatGPT on the Gravitational Redshift , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
ChatGPT on the Cosmological Redshift and the Hubble Constant , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
The Newtonian Gravitational Constant G Interpreted as the Gravitational Inertia of Vacuum - G0. How to Arrange Twelve Precise Experimental Determinations of GZ in their Spread 500 ppm? , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
ChatGPT on the Mathematical Language in Physics , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
Spin Interpreted as the Angular Momentum Curvature, Electron g-factor Interpreted as the Ratio of Toroidal Torsion and Curvature, Unlocking of the Fixed Planck Constant h – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 1 (2021) -
Jiří Stávek,
A New Interpretation of Contributions Presented at the Solvay Conference 1911. Can We Falsify the “Geocentric” Foundations of Quantum Mechanics in the Solar System? , European Journal of Applied Physics: Vol. 3 No. 6 (2021) -
Jiří Stávek,
The Rydberg Constant Interpreted as the Gaussian Curvature, Gauss-Bohr-de Broglie Model – Two Shadow Projections of the Helix, Unlocking of the Fixed Constant c of the Speed of Light – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
A New Interpretation of the Physical Color Theory Based on the Descartes´ Rotation Energy of Visible, Ultraviolet and Infrared Photons , European Journal of Applied Physics: Vol. 5 No. 5 (2023) -
Jiří Stávek,
How to Relieve the Hubble Constant Tension? (Earth´s Gravitational Redshift + Earth´s Diurnal Aberration) , European Journal of Applied Physics: Vol. 4 No. 2 (2022)