##plugins.themes.bootstrap3.article.main##

The Gravity Probe B Mission (GPB) collected valuable experimental data in the years 2004-2005. The geodetic drift in the orbit plane was interpreted as the curvature precession through the space-time curved by the Earth´s mass. The frame-dragging effect was interpreted using the Lense-Thirring-Schiff model based on the dragging of the orbit plane of a satellite around the rotating Earth. Both these effects were visible in the CORRECTED data. The gist of this contribution is to describe these gravitational events as the result of the joint effects of the gravitational deformation potential and the gravitational phonons in the gyroscope rotors. The gravitational phonon velocity is “hidden” in the formula discovered by Albert Einstein in his last Prague´s paper in 1912. Gravitational phonons and the gravitational deformation potential acting on the gyroscope rotors deform slightly the gyroscope rotor geometry and form both observed longitudinal and transverse precessions. This new interpretation of subtle gravitational precessions was tested on the RAW experimental data published by the GPB Team. The observed gravitational events occur in the classical 3D space in this scenario. We propose to re-analyze all GPB data according this classical model without additional corrections. The new Gravity Probe C + D missions might deliver more illustrative data comparing this model with the predictions of the general theory of relativity.

References

  1. Pugh GE. Proposal for a satellite test of the Coriolis prediction of general relativity. 1959. Published in Book, “Nonlinear gravitodynamics, the Lense-Thirring effect, a documentary introduction to current research. Eds. RJ Ruffini, C Sigismondi. 2002.
     Google Scholar
  2. Schiff LI. Possible new experimental test of general relativity theory. Physical Review Letters. 1960; 4(5): 215-217.
     Google Scholar
  3. Gravity Probe B. Wikipedia. accessed February 17 2022. https://en.wikipedia.org/wiki/Gravity_Probe_B.
     Google Scholar
  4. Gravity Probe B. NASA site. accessed February 17 2022. https://www.nasa.gov/mission_pages/gpb/index.html
     Google Scholar
  5. Gravity Probe B. Stanford site. accessed February 17 2022. https://einstein.stanford.edu/.
     Google Scholar
  6. The Gravity Probe B Experiment. “Testing Einstein´s Universe”. NASA Final Report. 2008. https://einstein.stanford.edu/content/final_report/GPB_Final_NASA_Report-020509-web.pdf.
     Google Scholar
  7. Everitt CWF et al. Gravity Probe B data analysis: status and potential for improved accuracy of scientific results. Classical and Quantum Gravity. 2008; 25(11): 114002.
     Google Scholar
  8. Everitt CWF et al. Gravity Probe B data analysis. Space Sci. Rev. 2009; 148: 53-69.
     Google Scholar
  9. Everitt CWF et al. Gravity Probe B: Final results of a space experiment to test general relativity. Physical Review Letters. 2011; 106: 221101.
     Google Scholar
  10. Focus Issue: Gravity Probe B. Classical and Quantum Gravity. 2015; 32(22): https://iopscience.iop.org/journal/0264-9381/page/Focus-issue-on-Gravity-Probe-B.
     Google Scholar
  11. Einstein A. Gibt es eine Gravitationswirkung, die der elektrodynamischen Induktionswirkung analog ist? Vierteljahrschrift für gerichtliche Medizin und öffentliches Sanitätswesen. 1912; 44: 37-40.
     Google Scholar
  12. Einstein A, Grossmann M. Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation. 1913; Leipzig und Berlin, Teubner.
     Google Scholar
  13. Lense J, Thirring H. Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift. 1918; 19: 156-163.
     Google Scholar
  14. Brill DR, Cohen JM. Rotating masses and their effect on inertial frames. Physical Review. 1966; 143: 1011-1015.
     Google Scholar
  15. Everitt CWF. The Stanford relativity experiment (A): History and overview. In Near Zero: New frontiers of physics. (Eds.) Fairbank JD, Deaver BS, Everitt CWF, Michelson PF. 1988.
     Google Scholar
  16. Ciufolini I, Pavlis E. A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature. 2004; 431: 958-960.
     Google Scholar
  17. Pfister H. On the history of the so-called Lense-Thirring effect. General Relativity and Gravitation. 2007; 39: 1735-1748.
     Google Scholar
  18. Bičák J, Katz J, Ledvinka T, Lynden-Bell D. Effects of rotating gravitational waves. Physical Review. 2012; D85: 124003.
     Google Scholar
  19. Everitt CWF. Et al. The Gravity Probe B test of general relativity. Classical Quantum Gravitation. 2015; 32> 224001.
     Google Scholar
  20. Pfister H. Rotating hollow and full spheres: Einstein, Thirring, Lense, and beyond. Chapter 5 In Beyond Einstein, Perspectives on Geometry, Gravitation, and Cosmology in the Twentieth century. (Eds.) Rowe DE, Sauer T, Walter SA. 2018; Birkhäuser, Springer.
     Google Scholar
  21. Bardeen J, Shockley W. Deformation potentials and mobilities in non-polar crystals. Physical Review. 1950; 72.
     Google Scholar
  22. Li Z, Graziosi P, Neophytou N. Deformation potential extraction and computationally efficient mobility calculations in silicon from first principles. 2021; Arxiv: 2104.08998v3.
     Google Scholar
  23. Stávek J. The ES log-normal distribution determined by the Einstein median as the scale parameter and the Shannon shape parameter. European Journal of Applied Physics. 2022;(1): 60-70. http://dx.doi.org/10.24018/ejphysics.2022.4.1.149.
     Google Scholar
  24. Stávek J. How to interpret gravitational events in the Newton´s rotating bucket? (Gravitational phonons). European Journal of Applied Physics. 2022; 4(2):1-7. http://dx.doi.org/10.24018/ejphysics.2022.4.2.151.
     Google Scholar
  25. The Gravity Probe B Experiment. “Testing Einstein´s Universe”. NASA Final Report. 2008. https://einstein.stanford.edu/content/final_report/GPB_Final_NASA_Report-020509-web.pdf page 76.
     Google Scholar
  26. Stávek J. How to decipher the Seegers-Tisserand-Gerber-Einstein formula and the Soldner-Einstein formula? European Journal of Applied Physics. 2022;(1): 1–9. http://dx.doi.org/10.24018/ejphysics.2022.4.1.143.
     Google Scholar
  27. Everitt CWF et al. Gravity Probe B data analysis. Space Sci. Rev. 2009; 148: 53-69. Fig. 13 on page 67.
     Google Scholar
  28. Everitt CWF. Testing Einstein in Space: The Gravity Probe B Mission. Public lecture May 18, 2006. http://einstein.stanford.edu/Media/Everitt_Brainstorm-flash.html.
     Google Scholar
  29. Muhlfelder B. Gravity Probe B. Overview. HEPL-AA Seminar, June 17 2009. http://einstein.stanford.edu/RESOURCES/presentations/T0133_GPB-Overview_Muhlfelder.pdf.
     Google Scholar
  30. GP-B status update: May 4, 2011. http://einstein.stanford.edu/highlights/status1.html.
     Google Scholar
  31. He J. Absolute relativity and prediction on Gravity Probe B data, its quantization and Solar applications. Arxiv: accessed February 21 2022: Astro-ph/0604084v6.
     Google Scholar
  32. Ni WT. Rotation, equivalence principle, and GP-B experiment. Arxiv: accessed February 21 2022: 1105.4305.pdf.
     Google Scholar
  33. Tajmar M, Assis AKT. Gravitational induction with Weber´s force. Canadian Journal of Physics. 2015; 93(12): 150803143313004.
     Google Scholar
  34. Iorio L. Is there still something left after that Gravity Probe B can measure? Universe. 2020; 6: 85. doi: 10.3390/universe6060085.
     Google Scholar
  35. Herrera L. Deconstructing frame-dragging. Universe. 2021; 7: 27. doi:10.3390/universe7020027.
     Google Scholar
  36. Gravitoelectromagnetism: Wikipedia accessed February 21 2022: https://en.wikipedia.org/wiki/Gravitoelectromagnetism.
     Google Scholar
  37. Frame-dragging: Wikipedia accessed February 21 2022: https://en.wikipedia.org/wiki/Frame-dragging.
     Google Scholar
  38. Tests of general relativity: Wikipedia accessed February 21 2022: https://en.wikipedia.org/wiki/Tests_of_general_relativity.
     Google Scholar
  39. Barbour JB, Pfister H. (Eds.). Mach´s Principle: From Newton´s Bucket to Quantum Gravity. Birkhäuser, Boston, 1995. ISBN 0-8176-3823-7.
     Google Scholar
  40. Will CM. Theory and Experiment in Gravitational Physics (Second edition). Cambridge University Press, 2018. ISBN-10: 1107117445.
     Google Scholar
  41. Rowe DE, Sauer T, Walter SA. Beyond Einstein. Perspective on Geometry, Gravitation, and Cosmology in the Twentieth Century. Birkäuser, 2018. ISBN: 978-1-4939-7706-2.
     Google Scholar
  42. Overduin JM. Spacetime, spin and gravity Arxiv: accessed February 20 2022: 1504.05774v1.
     Google Scholar


Most read articles by the same author(s)

1 2 3 > >>