How to Interpret Gravitational Events in the Gravity Probe B Mission? (Gravitational Phonons and Gravitational Deformation Potential)
##plugins.themes.bootstrap3.article.main##
The Gravity Probe B Mission (GPB) collected valuable experimental data in the years 2004-2005. The geodetic drift in the orbit plane was interpreted as the curvature precession through the space-time curved by the Earth´s mass. The frame-dragging effect was interpreted using the Lense-Thirring-Schiff model based on the dragging of the orbit plane of a satellite around the rotating Earth. Both these effects were visible in the CORRECTED data. The gist of this contribution is to describe these gravitational events as the result of the joint effects of the gravitational deformation potential and the gravitational phonons in the gyroscope rotors. The gravitational phonon velocity is “hidden” in the formula discovered by Albert Einstein in his last Prague´s paper in 1912. Gravitational phonons and the gravitational deformation potential acting on the gyroscope rotors deform slightly the gyroscope rotor geometry and form both observed longitudinal and transverse precessions. This new interpretation of subtle gravitational precessions was tested on the RAW experimental data published by the GPB Team. The observed gravitational events occur in the classical 3D space in this scenario. We propose to re-analyze all GPB data according this classical model without additional corrections. The new Gravity Probe C + D missions might deliver more illustrative data comparing this model with the predictions of the general theory of relativity.
References
-
Pugh GE. Proposal for a satellite test of the Coriolis prediction of general relativity. 1959. Published in Book, “Nonlinear gravitodynamics, the Lense-Thirring effect, a documentary introduction to current research. Eds. RJ Ruffini, C Sigismondi. 2002.
Google Scholar
1
-
Schiff LI. Possible new experimental test of general relativity theory. Physical Review Letters. 1960; 4(5): 215-217.
Google Scholar
2
-
Gravity Probe B. Wikipedia. accessed February 17 2022. https://en.wikipedia.org/wiki/Gravity_Probe_B.
Google Scholar
3
-
Gravity Probe B. NASA site. accessed February 17 2022. https://www.nasa.gov/mission_pages/gpb/index.html
Google Scholar
4
-
Gravity Probe B. Stanford site. accessed February 17 2022. https://einstein.stanford.edu/.
Google Scholar
5
-
The Gravity Probe B Experiment. “Testing Einstein´s Universe”. NASA Final Report. 2008. https://einstein.stanford.edu/content/final_report/GPB_Final_NASA_Report-020509-web.pdf.
Google Scholar
6
-
Everitt CWF et al. Gravity Probe B data analysis: status and potential for improved accuracy of scientific results. Classical and Quantum Gravity. 2008; 25(11): 114002.
Google Scholar
7
-
Everitt CWF et al. Gravity Probe B data analysis. Space Sci. Rev. 2009; 148: 53-69.
Google Scholar
8
-
Everitt CWF et al. Gravity Probe B: Final results of a space experiment to test general relativity. Physical Review Letters. 2011; 106: 221101.
Google Scholar
9
-
Focus Issue: Gravity Probe B. Classical and Quantum Gravity. 2015; 32(22): https://iopscience.iop.org/journal/0264-9381/page/Focus-issue-on-Gravity-Probe-B.
Google Scholar
10
-
Einstein A. Gibt es eine Gravitationswirkung, die der elektrodynamischen Induktionswirkung analog ist? Vierteljahrschrift für gerichtliche Medizin und öffentliches Sanitätswesen. 1912; 44: 37-40.
Google Scholar
11
-
Einstein A, Grossmann M. Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation. 1913; Leipzig und Berlin, Teubner.
Google Scholar
12
-
Lense J, Thirring H. Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift. 1918; 19: 156-163.
Google Scholar
13
-
Brill DR, Cohen JM. Rotating masses and their effect on inertial frames. Physical Review. 1966; 143: 1011-1015.
Google Scholar
14
-
Everitt CWF. The Stanford relativity experiment (A): History and overview. In Near Zero: New frontiers of physics. (Eds.) Fairbank JD, Deaver BS, Everitt CWF, Michelson PF. 1988.
Google Scholar
15
-
Ciufolini I, Pavlis E. A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature. 2004; 431: 958-960.
Google Scholar
16
-
Pfister H. On the history of the so-called Lense-Thirring effect. General Relativity and Gravitation. 2007; 39: 1735-1748.
Google Scholar
17
-
Bičák J, Katz J, Ledvinka T, Lynden-Bell D. Effects of rotating gravitational waves. Physical Review. 2012; D85: 124003.
Google Scholar
18
-
Everitt CWF. Et al. The Gravity Probe B test of general relativity. Classical Quantum Gravitation. 2015; 32> 224001.
Google Scholar
19
-
Pfister H. Rotating hollow and full spheres: Einstein, Thirring, Lense, and beyond. Chapter 5 In Beyond Einstein, Perspectives on Geometry, Gravitation, and Cosmology in the Twentieth century. (Eds.) Rowe DE, Sauer T, Walter SA. 2018; Birkhäuser, Springer.
Google Scholar
20
-
Bardeen J, Shockley W. Deformation potentials and mobilities in non-polar crystals. Physical Review. 1950; 72.
Google Scholar
21
-
Li Z, Graziosi P, Neophytou N. Deformation potential extraction and computationally efficient mobility calculations in silicon from first principles. 2021; Arxiv: 2104.08998v3.
Google Scholar
22
-
Stávek J. The ES log-normal distribution determined by the Einstein median as the scale parameter and the Shannon shape parameter. European Journal of Applied Physics. 2022;(1): 60-70. http://dx.doi.org/10.24018/ejphysics.2022.4.1.149.
Google Scholar
23
-
Stávek J. How to interpret gravitational events in the Newton´s rotating bucket? (Gravitational phonons). European Journal of Applied Physics. 2022; 4(2):1-7. http://dx.doi.org/10.24018/ejphysics.2022.4.2.151.
Google Scholar
24
-
The Gravity Probe B Experiment. “Testing Einstein´s Universe”. NASA Final Report. 2008. https://einstein.stanford.edu/content/final_report/GPB_Final_NASA_Report-020509-web.pdf page 76.
Google Scholar
25
-
Stávek J. How to decipher the Seegers-Tisserand-Gerber-Einstein formula and the Soldner-Einstein formula? European Journal of Applied Physics. 2022;(1): 1–9. http://dx.doi.org/10.24018/ejphysics.2022.4.1.143.
Google Scholar
26
-
Everitt CWF et al. Gravity Probe B data analysis. Space Sci. Rev. 2009; 148: 53-69. Fig. 13 on page 67.
Google Scholar
27
-
Everitt CWF. Testing Einstein in Space: The Gravity Probe B Mission. Public lecture May 18, 2006. http://einstein.stanford.edu/Media/Everitt_Brainstorm-flash.html.
Google Scholar
28
-
Muhlfelder B. Gravity Probe B. Overview. HEPL-AA Seminar, June 17 2009. http://einstein.stanford.edu/RESOURCES/presentations/T0133_GPB-Overview_Muhlfelder.pdf.
Google Scholar
29
-
GP-B status update: May 4, 2011. http://einstein.stanford.edu/highlights/status1.html.
Google Scholar
30
-
He J. Absolute relativity and prediction on Gravity Probe B data, its quantization and Solar applications. Arxiv: accessed February 21 2022: Astro-ph/0604084v6.
Google Scholar
31
-
Ni WT. Rotation, equivalence principle, and GP-B experiment. Arxiv: accessed February 21 2022: 1105.4305.pdf.
Google Scholar
32
-
Tajmar M, Assis AKT. Gravitational induction with Weber´s force. Canadian Journal of Physics. 2015; 93(12): 150803143313004.
Google Scholar
33
-
Iorio L. Is there still something left after that Gravity Probe B can measure? Universe. 2020; 6: 85. doi: 10.3390/universe6060085.
Google Scholar
34
-
Herrera L. Deconstructing frame-dragging. Universe. 2021; 7: 27. doi:10.3390/universe7020027.
Google Scholar
35
-
Gravitoelectromagnetism: Wikipedia accessed February 21 2022: https://en.wikipedia.org/wiki/Gravitoelectromagnetism.
Google Scholar
36
-
Frame-dragging: Wikipedia accessed February 21 2022: https://en.wikipedia.org/wiki/Frame-dragging.
Google Scholar
37
-
Tests of general relativity: Wikipedia accessed February 21 2022: https://en.wikipedia.org/wiki/Tests_of_general_relativity.
Google Scholar
38
-
Barbour JB, Pfister H. (Eds.). Mach´s Principle: From Newton´s Bucket to Quantum Gravity. Birkhäuser, Boston, 1995. ISBN 0-8176-3823-7.
Google Scholar
39
-
Will CM. Theory and Experiment in Gravitational Physics (Second edition). Cambridge University Press, 2018. ISBN-10: 1107117445.
Google Scholar
40
-
Rowe DE, Sauer T, Walter SA. Beyond Einstein. Perspective on Geometry, Gravitation, and Cosmology in the Twentieth Century. Birkäuser, 2018. ISBN: 978-1-4939-7706-2.
Google Scholar
41
-
Overduin JM. Spacetime, spin and gravity Arxiv: accessed February 20 2022: 1504.05774v1.
Google Scholar
42
Most read articles by the same author(s)
-
Jiří Stávek,
ChatGPT on the Einstein-Podolsky-Rosen Paradox , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
ChatGPT on the Gravitational Redshift , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
The Newtonian Gravitational Constant G Interpreted as the Gravitational Inertia of Vacuum - G0. How to Arrange Twelve Precise Experimental Determinations of GZ in their Spread 500 ppm? , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
ChatGPT on the Cosmological Redshift and the Hubble Constant , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
Spin Interpreted as the Angular Momentum Curvature, Electron g-factor Interpreted as the Ratio of Toroidal Torsion and Curvature, Unlocking of the Fixed Planck Constant h – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 1 (2021) -
Jiří Stávek,
A New Interpretation of Contributions Presented at the Solvay Conference 1911. Can We Falsify the “Geocentric” Foundations of Quantum Mechanics in the Solar System? , European Journal of Applied Physics: Vol. 3 No. 6 (2021) -
Jiří Stávek,
ChatGPT on the Mathematical Language in Physics , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
The Rydberg Constant Interpreted as the Gaussian Curvature, Gauss-Bohr-de Broglie Model – Two Shadow Projections of the Helix, Unlocking of the Fixed Constant c of the Speed of Light – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
A New Interpretation of the Physical Color Theory Based on the Descartes´ Rotation Energy of Visible, Ultraviolet and Infrared Photons , European Journal of Applied Physics: Vol. 5 No. 5 (2023) -
Jiří Stávek,
How to Relieve the Hubble Constant Tension? (Earth´s Gravitational Redshift + Earth´s Diurnal Aberration) , European Journal of Applied Physics: Vol. 4 No. 2 (2022)