What is Hidden in the Planck Distribution Function and the Wien´s Peaks? II. Do Atoms Fuse Solar Photons into Gravitons?


  •   Jiří Stávek


There were derived many forms of the Planck distribution function (PDF) since its discovery by Planck in 1900 and formulae for the positions of Wien´s peaks in those distributions. There are published many attempts searching for the quantum gravity model. In this presented model we work with concept of fusion of two Solar photons into one graviton inside of atoms. The PDF and Wien´s peak for graviton number distribution was presented. The formula for the description of the graviton momentum distribution was derived. Three tests are proposed to estimate the reality of this model. The first test searches for the dependence of the Solar gravitational constant on the value of the Rydberg constant of atoms used in the source masses. There were collected experimental data for the big G value during the last decade and the confirmation of this prediction is promising. The second test should analyze the influence of temperature of other central stars on the gravitation events in those surroundings. The third test should explore the effect of the magnitude of the graviton momentum in other Stellar Systems on gravitational effects in those systems. This could be a new way to remove fitting data with the introduction of models with “dark matter”. We have summarized the known forms of the PDF and positions of Wien´s peaks in order to search some hidden properties in those mathematical structures. It will be shown that these very well-known formulae to all scholars might still keep some hidden surprising properties.

Keywords: Fusion of Solar Photons, Graviton Formation Inside of Atoms, Graviton Momentum, Solar Gravitational Constant, Three Experimental Verifications


Wien W. Eine neue Beziehung der Strahlung schwarzer Körper zum zweiten Hauptsatz der Wärmetheorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin. 1893; S. 55. German.

Wien W. Űber die Energievertheilung im Emissionspectrum eines schwarzen Körpers. Annalen der Physik und Chemie. 1896; 294(8): 662-669. German.

Planck M. Űber eine Verbesserung der Wien´schen Spectralgleichung. Verhandlungen der Deutschen Physikalischen Gesselschaft. 1900; 2: 202-204. German.

Einstein A. Űber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik. 1905; 17: 164-181. German.

Nernst W. (Editor). Die Theorie der Strahlung und der Quanten. Verhandlungen auf einer von E. Solvay einberufenen Zusammenkunft (30. Oktober bis 3. November 1911). Knapp Verlag, Halle a.S., 1914. German.

Kangro H. Vorgeschichte des Plankschen Strahlungsgesetzes. Messungen und Theorien der Spektralen Energieverteilung bis zur Begründung der Quantenhypothese. Franz Steiner Verlag, Wiesbaden, 1970. German.

Kuhn TS. Black-body theory and the quantum discontinuity, 1894-1912. The University Chicago Press, 1978.

Gershun AA. On the spectral density of radiation. Uspekhi Fizicheskich Nauk. 1952; (3): 388-395. Russian.

Foitzik L. Űber die Darstellung der spektkralen Energieverteilung von Strahlungsquellen. Experimentelle Technik der Physik. 1953; 1953(4/5): 209-213. German.

Bracewell RN. The maximum of the Planck energy spectrum. Nature (London). 1954; 4429: 563-564.

Gurevich MM. On the spectral distribution of radiant energy. Uspekhi Fizicheskikh Nauk. 1955; 56(3): 417-424.

Sapozhnikov RA. Spectral distribution of radiant energy. Soviet Physics Uspekhi. 1960; 3(1): 172-174.

Chiu WC. On the interpretation of the energy spectrum. American Journal of Physics. 1967; 35(7): 642-648.

Soffer BH, Lynch DK. Some paradoxes, errors, and resolutions concerning the spectral optimization of human vision. American Journal of Physics, 1999; 67(11): 946-953.

Overduin JM. Eyesight and the Solar Wien peak. American Journal of Physics, 2003; 71(3): 216-219.

Heald MA. Where is the „Wien peak“? American Journal of Physics, 2003; 71(12): 1322-1323.

Kramm G, Mölders N. Planck´s blackbody radiation law: presentation in different domains and determination of the rrelated dimensional constants. Arxiv: 0901.1863v2. [Accessed on January 29, 2023]

Zhang ZM, Wang XJ. Unified Wien´s displacement law in terms of logarithmic frequency or wavelength scale. Journal of Thermophysics and Heat Transfer. 2010; 24(1): 222-224.

Stewart SM. Wien peaks and the Lambert W function. Revista Brasileira de Ensimo de Física. 2011; 33(3): 3308.

Stewart SM. Spectral peaks and Wien´s displacement law. Journal of Thermophysics ad Heat Transfer. 2012; 26(4): 689-691.

Marr JM, Wilkin FP. A better presentation of Planck´s radiation law. Arxiv: 1109.3822v3. [Accessed on January 29, 2023]

Deldago-Bonal A. Entropy of radiation: the unseen side of light. Scientific Reports. 2017; 7: 1642.

Hagen N. Spectra, images, simple functions, and density functions. 2021 11th Workshop on hyperspectral imaging and signal processing: evolution in remote sensing (WHISPERS), Amsterdam, Netherlands, 2021, pp. 1-5.

Kostić L, Mančev I. Lambert W function ad different forms of Wien´s displacement law. Romanian Reports in Physics. 2021; 73: 906.

Calculation of blackbody radiance. Arxiv: 2108.03119. [Accessed on January 29, 2023]

Gnanarajan S. Application of Lambert W function to Planck spectral radiance frequencies. Journal of Applied Mathematics and Physics, 2021; 9: 2500-2510.

Plancksches Strahlungsgesetz. Wikipedia: https://de.wikipedia.org/wiki/Plancksches_Strahlungsgesetz [Last access on January 29, 2023. German.

Gertsenshtein ME. Wave resonance of light and gravitational waves. Soviet Physics J. Exp. Theor. Phys. 1962; 14: 84-85.

Weinberg S. Infrared photons and gravitons. Phys. Rev. 1965; 140: B516-B524.

Schwinger J. Sources and gravitons. Phys. Rev. 1968; 173: 1264-1272.

Zel´dovich Ya.B. Electromagnetic and gravitational waves in a stationary magnetic field. Soviet Physics J. Exp. Theor. Phys. 1974; 38: 652-654.

Rothman T, Boughn S. Can gravitons be detected? Arxiv: gr-qc/0601043v3. [Accessed on January 29, 2023]

Dyson FJ. Is a graviton detectable? International Journal of Modern Physics A. 2013; 28(25): 1330041.

Halpern L, Jouvet B. On the stimulated photon-graviton conversion by an electromagnetic field. Annalen Inst. Henri Poincaré Section A. 1968; VIII: 25-42.

Poznanin PL. Conversion of a photon into a graviton in an external magnetic field and decay of a graviton into a photon in an external gravitational field. Soviet Physics Journal. 1969; 12: 1296-1299.

Boccateletti D, Sabbata V, Fortini P, Gualdi C. Conversion of photons into gravitons and vice versa in a static electromagnetic field. Il Nuovo Cimenti B. 1970; 70: 129-146.

Voronov NA. Gravitational Compton effect and photoproduction of gravitons by electrons. Soviet Physics J. Exp. Theor. Physics. 1973; 37(6): 953-958.

De Logi W, Mickelson A. Electrogravitational cross sections in static electromagnetic fields. Phys. Rev. D. 1977; 16: 2915-2927.

Gould RJ. The graviton luminosity of the Sun and other Stars. The Astrophysical Journal. 1985; 288: 789-794.

Chen P. Resonant photon-graviton conversion in EM fields: from Earth to Heaven. 1994; SCAN-9411180.

Atwood D, Bar-Shalom S, Soni A. Graviton production by two photon and electron-photon processes in Kaluza-Klein theories with large extra dimensions. Arxiv: hep-ph/9909392v2. [Accessed on January 29, 2023]

Ravndal F, Sundberg M. Graviton-photon conversion on spin 0 and ½ particles. International Journal of Modern Physics A. 2002; 17(27): 3963-3973.

Källberg A, Brodin G, Marklund M. Photon-graviton pair coversion. Arxiv: gr-qc/0410005v2. [Accessed on January 29, 2023]

Adam ZR. Evidence of gravitons as fused photons in four dimensions. Arxiv: 0902.0178.

Holman R, Wang Y. Goldstone bosons to gravitons: a new gravity-wave production mechanism. Physical Review D. 1989; 40: 3204-3210.

Machado MVT. Graviton production by two-photon processes in TeV-scale gravitational interactions. Astronomical Notes (Astronomische Nachrichten). 2017; 338(9-10): 1029-1033.

Cembranos JAR, Graviton-photon oscillation in alternative theories of gravity. Class. Quantum Grav. 2018; 35: 205008.

Schubert Ch. Processes with Photon and Gravitons. J. Phys. Conf. Ser. 2019; 1208: 012008.

Brandenberger R, Delgado PCM, Ganz A, Lin Ch. Graviton to photon conversion via parametric resonance. Arxiv: 2205.08767v2. [Accessed on January 29, 2023]

Goldhaber AS, Nieto MM. Photon and graviton mass limits. Arxiv: 0809.1003v5. [Accessed on January 29, 2023]

De Rham C, Deskins JT, Tolley AJ, Zhou SY. Graviton mass bounds. Arxiv: 1606.08462v2. [Accessed on January 29, 2023]

Athira BS, Mandal S, Bauerjee S. Characteristics of interaction between gravitons and photons. Arxiv: 2001.10196v2. [Accessed on January 29, 2023]

Volobuev AN. Photon and graviton: similarity and distinctions. Journal of High Energy Physics, Gravitation and Cosmology. 2022; 8: 1110-1126.

Hawking SW. Particle creation by black holes. Commun. Math. Phys. 1975; 43: 199-220.

Mück W. Hawking radiation is corpuscular. European Physical Journal C. 2016; 76: 374.

Broda B. Total spectral distributions from Hawking radiation. European Physical Journal C. 2017; 77:756.

Haslinger P. Jaffe M, Xu V, Schwartz O, Sonnleitner M, Ritsch-Marte M, Ritsch H, Müller H. Attractive force on atoms due to blackbody radiation. Nature Physics Letters. 2018; 14: 257-260.

Nash L. Gravitational black-body radiation. Journal of High Energy, Gravitation and Cosmology. 2022; 8: 527-535.

Almeida CR, Hacquet J. Analogue gravity and the Hawking effect: historical perspective and literature review. Arxiv: 2212.08838v1. [Accessed on January 29, 2023]

Stávek J. What is hidden in the Planck distribution function and the Wien´s peaks? I. Three features of the Solar photons. European Journal of Applied Physics, 2023; 5(2): 1-8.

Chang SL, Rhee KT. Blackbody radiation functions. International Communications in Heat and Mass Transfer. 1984; 11(5): 451-455.

Jain PK. IR, visible, and UV components in the spectral distribution of blackbody radiation. Physics Education, 1996; 31:149-155.

Lawson D. A closer look at Planck´s blackbody equation. Physics Education. 1997; 35(5): 321-326.

Lawson DL. The blackbody fraction, infinite series and spreadsheets. International Journal of Engineering Education. 2004; 20(6): 984-900.

Einstein A. On the quantum theory of radiation. In J. Stachel et al. (Ed.). The collected papers of Albert Einstein. Princeton: Princeton University Press. 1987-2010; Vol. 6. Doc. 38.

Stávek J. The Newtonian gravitational constant G interpreted as the gravitational inertia of vacuum G0. How to arrange twelve precise experimental determinations of GZ in their spread 500 ppm? Unlocking of the recommended value of the constant G – new tests for old physics. European Journal of Applied Physics, 2021; 3(2): 44-47.

Quinn TJ, Speake CC, Richman SJ, Davis RS, Picard A. A new determination of G using two independent methods. Phys. Rev. Lett., vol. 87, 111101, (2001).

Quinn T, Parks H, Speake C, Davis R. Improved determination of G using two methods. Phys. Rev. Lett., 2013; 111: 101102.

Quinn T, Speake C, Parks H, Davis R. The BIPM measurements of the Newtonian constant of gravitation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014; 372: 2026.

Gundlach JH, Merkowitz SM. Measurement of Newton´s constant using a torsion balance with angular acceleration feedback. Phys. Rev. Lett., 2000; 85: 2869-2872.

Li Q, et al. Measurements of the gravitational constant using two independent methods,” Nature, 2018; 560: 582-588.

Armstrong TR, Fitzgerald MP. New measurements of G using the measurements standards laboratory torsion balance. Phys. Rev. Let., 2003; 91: 201101.

Newman R, Bantel M, Berg E, Cross W. A measurement of G with a cryogenic torsion pendulum. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014; 372: 2026.

Parks HV, Faller JE. Simple pendulum determination of the gravitational constant. Phys. Rev. Lett., 2010; 105: 110801.

Luther GG, Towler WR. Redetermination of the Newtonian gravitational constant. Phys. Rev. Lett., 1982; 48: 121.

Rosi G, Sorrentino F, Cacciapuoti L, Prevendelli M, Tino GM. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature, 2014; 510: 518-521.

Schlamminger S, Holzschuh E, Kündig W, Nolting F, Pixley RE, Schurr J, Straumann U. Measurement of Newton´s gravitational constant. Phys. Rev. D, 2006; 74: 082001.

Kleinevoß U. Bestimmung der Newtonschen Gravitationskonstanten G. PhD. Thesis, Bergische Universität Wuppertal, Wuppertal, Germany, (2002). German.

Newton I. The Principia. Mathematical Principles of Natural Philosophy. A new translation by IB Cohen and A. Whitman assisted by J. Budenz. University Press of California, Berkeley, 1999. General Scholium. ISBN 978-0-520-08816-0.


How to Cite
Stávek, J. (2023). What is Hidden in the Planck Distribution Function and the Wien´s Peaks? II. Do Atoms Fuse Solar Photons into Gravitons?. European Journal of Applied Physics, 5(2), 9–16. https://doi.org/10.24018/ejphysics.2023.5.2.241

Most read articles by the same author(s)

1 2 > >>