##plugins.themes.bootstrap3.article.main##

There were derived many forms of the Planck distribution function (PDF) since its discovery by Planck in 1900 and formulae for the positions of Wien´s peaks in those distributions. There are published many attempts searching for the quantum gravity model. In this presented model we work with concept of fusion of two Solar photons into one graviton inside of atoms. The PDF and Wien´s peak for graviton number distribution was presented. The formula for the description of the graviton momentum distribution was derived. Three tests are proposed to estimate the reality of this model. The first test searches for the dependence of the Solar gravitational constant on the value of the Rydberg constant of atoms used in the source masses. There were collected experimental data for the big G value during the last decade and the confirmation of this prediction is promising. The second test should analyze the influence of temperature of other central stars on the gravitation events in those surroundings. The third test should explore the effect of the magnitude of the graviton momentum in other Stellar Systems on gravitational effects in those systems. This could be a new way to remove fitting data with the introduction of models with “dark matter”. We have summarized the known forms of the PDF and positions of Wien´s peaks in order to search some hidden properties in those mathematical structures. It will be shown that these very well-known formulae to all scholars might still keep some hidden surprising properties.

References

  1. Wien W. Eine neue Beziehung der Strahlung schwarzer Körper zum zweiten Hauptsatz der Wärmetheorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin. 1893; S. 55. German.
     Google Scholar
  2. Wien W. Űber die Energievertheilung im Emissionspectrum eines schwarzen Körpers. Annalen der Physik und Chemie. 1896; 294(8): 662-669. German.
     Google Scholar
  3. Planck M. Űber eine Verbesserung der Wien´schen Spectralgleichung. Verhandlungen der Deutschen Physikalischen Gesselschaft. 1900; 2: 202-204. German.
     Google Scholar
  4. Einstein A. Űber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik. 1905; 17: 164-181. German.
     Google Scholar
  5. Nernst W. (Editor). Die Theorie der Strahlung und der Quanten. Verhandlungen auf einer von E. Solvay einberufenen Zusammenkunft (30. Oktober bis 3. November 1911). Knapp Verlag, Halle a.S., 1914. German.
     Google Scholar
  6. Kangro H. Vorgeschichte des Plankschen Strahlungsgesetzes. Messungen und Theorien der Spektralen Energieverteilung bis zur Begründung der Quantenhypothese. Franz Steiner Verlag, Wiesbaden, 1970. German.
     Google Scholar
  7. Kuhn TS. Black-body theory and the quantum discontinuity, 1894-1912. The University Chicago Press, 1978.
     Google Scholar
  8. Gershun AA. On the spectral density of radiation. Uspekhi Fizicheskich Nauk. 1952; (3): 388-395. Russian.
     Google Scholar
  9. Foitzik L. Űber die Darstellung der spektkralen Energieverteilung von Strahlungsquellen. Experimentelle Technik der Physik. 1953; 1953(4/5): 209-213. German.
     Google Scholar
  10. Bracewell RN. The maximum of the Planck energy spectrum. Nature (London). 1954; 4429: 563-564.
     Google Scholar
  11. Gurevich MM. On the spectral distribution of radiant energy. Uspekhi Fizicheskikh Nauk. 1955; 56(3): 417-424.
     Google Scholar
  12. Sapozhnikov RA. Spectral distribution of radiant energy. Soviet Physics Uspekhi. 1960; 3(1): 172-174.
     Google Scholar
  13. Chiu WC. On the interpretation of the energy spectrum. American Journal of Physics. 1967; 35(7): 642-648.
     Google Scholar
  14. Soffer BH, Lynch DK. Some paradoxes, errors, and resolutions concerning the spectral optimization of human vision. American Journal of Physics, 1999; 67(11): 946-953.
     Google Scholar
  15. Overduin JM. Eyesight and the Solar Wien peak. American Journal of Physics, 2003; 71(3): 216-219.
     Google Scholar
  16. Heald MA. Where is the „Wien peak“? American Journal of Physics, 2003; 71(12): 1322-1323.
     Google Scholar
  17. Kramm G, Mölders N. Planck´s blackbody radiation law: presentation in different domains and determination of the rrelated dimensional constants. Arxiv: 0901.1863v2. [Accessed on January 29, 2023]
     Google Scholar
  18. Zhang ZM, Wang XJ. Unified Wien´s displacement law in terms of logarithmic frequency or wavelength scale. Journal of Thermophysics and Heat Transfer. 2010; 24(1): 222-224.
     Google Scholar
  19. Stewart SM. Wien peaks and the Lambert W function. Revista Brasileira de Ensimo de Física. 2011; 33(3): 3308.
     Google Scholar
  20. Stewart SM. Spectral peaks and Wien´s displacement law. Journal of Thermophysics ad Heat Transfer. 2012; 26(4): 689-691.
     Google Scholar
  21. Marr JM, Wilkin FP. A better presentation of Planck´s radiation law. Arxiv: 1109.3822v3. [Accessed on January 29, 2023]
     Google Scholar
  22. Deldago-Bonal A. Entropy of radiation: the unseen side of light. Scientific Reports. 2017; 7: 1642.
     Google Scholar
  23. Hagen N. Spectra, images, simple functions, and density functions. 2021 11th Workshop on hyperspectral imaging and signal processing: evolution in remote sensing (WHISPERS), Amsterdam, Netherlands, 2021, pp. 1-5.
     Google Scholar
  24. Kostić L, Mančev I. Lambert W function ad different forms of Wien´s displacement law. Romanian Reports in Physics. 2021; 73: 906.
     Google Scholar
  25. Calculation of blackbody radiance. Arxiv: 2108.03119. [Accessed on January 29, 2023]
     Google Scholar
  26. Gnanarajan S. Application of Lambert W function to Planck spectral radiance frequencies. Journal of Applied Mathematics and Physics, 2021; 9: 2500-2510.
     Google Scholar
  27. Plancksches Strahlungsgesetz. Wikipedia: https://de.wikipedia.org/wiki/Plancksches_Strahlungsgesetz [Last access on January 29, 2023. German.
     Google Scholar
  28. Gertsenshtein ME. Wave resonance of light and gravitational waves. Soviet Physics J. Exp. Theor. Phys. 1962; 14: 84-85.
     Google Scholar
  29. Weinberg S. Infrared photons and gravitons. Phys. Rev. 1965; 140: B516-B524.
     Google Scholar
  30. Schwinger J. Sources and gravitons. Phys. Rev. 1968; 173: 1264-1272.
     Google Scholar
  31. Zel´dovich Ya.B. Electromagnetic and gravitational waves in a stationary magnetic field. Soviet Physics J. Exp. Theor. Phys. 1974; 38: 652-654.
     Google Scholar
  32. Rothman T, Boughn S. Can gravitons be detected? Arxiv: gr-qc/0601043v3. [Accessed on January 29, 2023]
     Google Scholar
  33. Dyson FJ. Is a graviton detectable? International Journal of Modern Physics A. 2013; 28(25): 1330041.
     Google Scholar
  34. Halpern L, Jouvet B. On the stimulated photon-graviton conversion by an electromagnetic field. Annalen Inst. Henri Poincaré Section A. 1968; VIII: 25-42.
     Google Scholar
  35. Poznanin PL. Conversion of a photon into a graviton in an external magnetic field and decay of a graviton into a photon in an external gravitational field. Soviet Physics Journal. 1969; 12: 1296-1299.
     Google Scholar
  36. Boccateletti D, Sabbata V, Fortini P, Gualdi C. Conversion of photons into gravitons and vice versa in a static electromagnetic field. Il Nuovo Cimenti B. 1970; 70: 129-146.
     Google Scholar
  37. Voronov NA. Gravitational Compton effect and photoproduction of gravitons by electrons. Soviet Physics J. Exp. Theor. Physics. 1973; 37(6): 953-958.
     Google Scholar
  38. De Logi W, Mickelson A. Electrogravitational cross sections in static electromagnetic fields. Phys. Rev. D. 1977; 16: 2915-2927.
     Google Scholar
  39. Gould RJ. The graviton luminosity of the Sun and other Stars. The Astrophysical Journal. 1985; 288: 789-794.
     Google Scholar
  40. Chen P. Resonant photon-graviton conversion in EM fields: from Earth to Heaven. 1994; SCAN-9411180.
     Google Scholar
  41. Atwood D, Bar-Shalom S, Soni A. Graviton production by two photon and electron-photon processes in Kaluza-Klein theories with large extra dimensions. Arxiv: hep-ph/9909392v2. [Accessed on January 29, 2023]
     Google Scholar
  42. Ravndal F, Sundberg M. Graviton-photon conversion on spin 0 and ½ particles. International Journal of Modern Physics A. 2002; 17(27): 3963-3973.
     Google Scholar
  43. Källberg A, Brodin G, Marklund M. Photon-graviton pair coversion. Arxiv: gr-qc/0410005v2. [Accessed on January 29, 2023]
     Google Scholar
  44. Adam ZR. Evidence of gravitons as fused photons in four dimensions. Arxiv: 0902.0178.
     Google Scholar
  45. Holman R, Wang Y. Goldstone bosons to gravitons: a new gravity-wave production mechanism. Physical Review D. 1989; 40: 3204-3210.
     Google Scholar
  46. Machado MVT. Graviton production by two-photon processes in TeV-scale gravitational interactions. Astronomical Notes (Astronomische Nachrichten). 2017; 338(9-10): 1029-1033.
     Google Scholar
  47. Cembranos JAR, Graviton-photon oscillation in alternative theories of gravity. Class. Quantum Grav. 2018; 35: 205008.
     Google Scholar
  48. Schubert Ch. Processes with Photon and Gravitons. J. Phys. Conf. Ser. 2019; 1208: 012008.
     Google Scholar
  49. Brandenberger R, Delgado PCM, Ganz A, Lin Ch. Graviton to photon conversion via parametric resonance. Arxiv: 2205.08767v2. [Accessed on January 29, 2023]
     Google Scholar
  50. Goldhaber AS, Nieto MM. Photon and graviton mass limits. Arxiv: 0809.1003v5. [Accessed on January 29, 2023]
     Google Scholar
  51. De Rham C, Deskins JT, Tolley AJ, Zhou SY. Graviton mass bounds. Arxiv: 1606.08462v2. [Accessed on January 29, 2023]
     Google Scholar
  52. Athira BS, Mandal S, Bauerjee S. Characteristics of interaction between gravitons and photons. Arxiv: 2001.10196v2. [Accessed on January 29, 2023]
     Google Scholar
  53. Volobuev AN. Photon and graviton: similarity and distinctions. Journal of High Energy Physics, Gravitation and Cosmology. 2022; 8: 1110-1126.
     Google Scholar
  54. Hawking SW. Particle creation by black holes. Commun. Math. Phys. 1975; 43: 199-220.
     Google Scholar
  55. Mück W. Hawking radiation is corpuscular. European Physical Journal C. 2016; 76: 374.
     Google Scholar
  56. Broda B. Total spectral distributions from Hawking radiation. European Physical Journal C. 2017; 77:756.
     Google Scholar
  57. Haslinger P. Jaffe M, Xu V, Schwartz O, Sonnleitner M, Ritsch-Marte M, Ritsch H, Müller H. Attractive force on atoms due to blackbody radiation. Nature Physics Letters. 2018; 14: 257-260.
     Google Scholar
  58. Nash L. Gravitational black-body radiation. Journal of High Energy, Gravitation and Cosmology. 2022; 8: 527-535.
     Google Scholar
  59. Almeida CR, Hacquet J. Analogue gravity and the Hawking effect: historical perspective and literature review. Arxiv: 2212.08838v1. [Accessed on January 29, 2023]
     Google Scholar
  60. Stávek J. What is hidden in the Planck distribution function and the Wien´s peaks? I. Three features of the Solar photons. European Journal of Applied Physics, 2023; 5(2): 1-8.
     Google Scholar
  61. Chang SL, Rhee KT. Blackbody radiation functions. International Communications in Heat and Mass Transfer. 1984; 11(5): 451-455.
     Google Scholar
  62. Jain PK. IR, visible, and UV components in the spectral distribution of blackbody radiation. Physics Education, 1996; 31:149-155.
     Google Scholar
  63. Lawson D. A closer look at Planck´s blackbody equation. Physics Education. 1997; 35(5): 321-326.
     Google Scholar
  64. Lawson DL. The blackbody fraction, infinite series and spreadsheets. International Journal of Engineering Education. 2004; 20(6): 984-900.
     Google Scholar
  65. Einstein A. On the quantum theory of radiation. In J. Stachel et al. (Ed.). The collected papers of Albert Einstein. Princeton: Princeton University Press. 1987-2010; Vol. 6. Doc. 38.
     Google Scholar
  66. Stávek J. The Newtonian gravitational constant G interpreted as the gravitational inertia of vacuum G0. How to arrange twelve precise experimental determinations of GZ in their spread 500 ppm? Unlocking of the recommended value of the constant G – new tests for old physics. European Journal of Applied Physics, 2021; 3(2): 44-47.
     Google Scholar
  67. Quinn TJ, Speake CC, Richman SJ, Davis RS, Picard A. A new determination of G using two independent methods. Phys. Rev. Lett., vol. 87, 111101, (2001).
     Google Scholar
  68. Quinn T, Parks H, Speake C, Davis R. Improved determination of G using two methods. Phys. Rev. Lett., 2013; 111: 101102.
     Google Scholar
  69. Quinn T, Speake C, Parks H, Davis R. The BIPM measurements of the Newtonian constant of gravitation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014; 372: 2026.
     Google Scholar
  70. Gundlach JH, Merkowitz SM. Measurement of Newton´s constant using a torsion balance with angular acceleration feedback. Phys. Rev. Lett., 2000; 85: 2869-2872.
     Google Scholar
  71. Li Q, et al. Measurements of the gravitational constant using two independent methods,” Nature, 2018; 560: 582-588.
     Google Scholar
  72. Armstrong TR, Fitzgerald MP. New measurements of G using the measurements standards laboratory torsion balance. Phys. Rev. Let., 2003; 91: 201101.
     Google Scholar
  73. Newman R, Bantel M, Berg E, Cross W. A measurement of G with a cryogenic torsion pendulum. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014; 372: 2026.
     Google Scholar
  74. Parks HV, Faller JE. Simple pendulum determination of the gravitational constant. Phys. Rev. Lett., 2010; 105: 110801.
     Google Scholar
  75. Luther GG, Towler WR. Redetermination of the Newtonian gravitational constant. Phys. Rev. Lett., 1982; 48: 121.
     Google Scholar
  76. Rosi G, Sorrentino F, Cacciapuoti L, Prevendelli M, Tino GM. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature, 2014; 510: 518-521.
     Google Scholar
  77. Schlamminger S, Holzschuh E, Kündig W, Nolting F, Pixley RE, Schurr J, Straumann U. Measurement of Newton´s gravitational constant. Phys. Rev. D, 2006; 74: 082001.
     Google Scholar
  78. Kleinevoß U. Bestimmung der Newtonschen Gravitationskonstanten G. PhD. Thesis, Bergische Universität Wuppertal, Wuppertal, Germany, (2002). German.
     Google Scholar
  79. Newton I. The Principia. Mathematical Principles of Natural Philosophy. A new translation by IB Cohen and A. Whitman assisted by J. Budenz. University Press of California, Berkeley, 1999. General Scholium. ISBN 978-0-520-08816-0.
     Google Scholar


Most read articles by the same author(s)

1 2 3 4 > >>