##plugins.themes.bootstrap3.article.main##

The solutions of the Klein- Gordon equation for the quantum mechanical gravitational plus harmonic oscillator potential with equal scalar and vector potential have been presented using the parametric Nikiforov-Uvarov method. The energy eigenvalues were obtained in relativistic and non-relativistic regime and the corresponding un-normalized eigenfunctions in terms of Laguerre polynomials. The numerical values for the S – wave bound state were obtained.

References

  1. S. Flugge, Practical Quantum Mechanics II, Springer, Berlin, 1971.
     Google Scholar
  2. C.M. Ekpo, E.P. Inyang, P.O. Okoi, et al., New Generalized Morse-Like potential for studying the Atomic interaction in Diatomic Molecules. http://arXiv:2012.02581,2020.
     Google Scholar
  3. A. N. Ikot, L. E. Akpabio, K. Essien, E. E. Ituen and I. B. Obot, Variational Principle Techniques and the Properties of a cut-off and Anharmonic wave function. E-Journal of Chemistry, Vol. 6, pp. 113-119,2009.
     Google Scholar
  4. J.E. Ntibi, E.P. Inyang, E. P. Inyang, and E.S. William, Relativistic Treatment of D-Dimensional Klien-Gordon equation with Yukawa potential. International Journal of Innovative Science, Engineering & Technology Vol. 11(7), pp2348-7968, 2020.
     Google Scholar
  5. C. Berkdemir, A. Berkdemir and J. Han, Bound state solutions of the Schrödinger equation for modified Kratzer Molecular potential. Chemical Physics Letters.vol.417,pp 326-329,2006.
     Google Scholar
  6. I.O. Akpan, E.P. Inyang, E.P. Inyang and E.S. William, Approximate solutions of the Schrödinger equation with Hulthen-Hellman potentials for a Quarkonium system. arXiv:2101.01175,2021ю
     Google Scholar
  7. E.P. Inyang, E.P. Inyang, J.E. Ntibi, and E.S. William, Analytical solutions of Schrodinger equation with Kratzer-screened Coulomb potential for a Quarkonium system. Bulletin of Pure and Applied Sciences, Vol. 40 (D).10.5958/2320-3218.2020.00020.2 (2021) pp. 14-24.
     Google Scholar
  8. C.O. Edet and P.O. Okoi, “Any l-state solutions of the Schrödinger equation for q-deformed Hulthen plusgeneralized inverse quadratic Yukawa potential in arbitrary dimensions”. Revista Mexicana Fisica, 65, pp. 333-344, 2019.
     Google Scholar
  9. H. Louis, B.I. Ita, O.U. Akakuru, N.A. Nzeata-Ibe, A.I. Ikeuba, T.O. Magu, P.I. Amos and C.O. Edet, l-state Solutions of the Relativistic and Non-Relativistic Wave Equations for Modified Hylleraas-Hulthen Potential Using the Nikiforov-Uvarov Quantum Formalism, Oriental J. Phys. Sci.3 (2018) 1. http://www.orientjphysicalsciesnces.org/.
     Google Scholar
  10. E. Omugbe, O.E. Osafile and M.C. Onyeajh, “Mass spectrum of mesons via WKB Approximation method”. Advance in High Energy. Phys.10 1143-1155, 2020.
     Google Scholar
  11. E. P. Inyang, E. S. William and J. A. Obu, Eigensolutions of the N-dimensional Schrödinger equation interacting with Varshni-Hulthen potential model. Revista Mexicana de Fisica. Vol. 67(2), pp. 193-205, 2021.
     Google Scholar
  12. E.P. Inyang, E. P. Inyang, E.S. William, and E. E. Ibekwe, “Study on the applicability of Varshni potential to predict the mass-spectra of the Quark-Antiquark systems in a non-relativistic framework” Jordan Journal of Physics. Vol. 14(4), pp. 337-345, 2021.
     Google Scholar
  13. C.O. Edet and P.O. Okoi, “Any l-state solutions of the Schrödinger equation for q-deformed Hulthen plusgeneralized inverse quadratic Yukawa potential in arbitrary dimensions”. Revista Mexicana Fisica, 65, pp. 333-344, 2019.
     Google Scholar
  14. E.P. Inyang, J. E. Ntibi, E.P. Inyang, E.S. William, and C.C. Ekechukwu, Any L-state solutions of the Schrödinger equation interacting with class of Yukawa-Eckart potentials. International Journal of Innovative Science, Engineering & Technology, Vol. 11(7), 2432, 2020.
     Google Scholar
  15. Ikot, A. N., Okorie, U. S., Amadi, P. O., Edet, C. O., Rampho, G. J., & Sever, R. (2021). The Nikiforov–Uvarov-Functional Analysis (NUFA) Method: A New Approach for Solving Exponential-Type Potentials. Few-Body Systems, 62(1), 1-16. https://doi.org/10.1007/s00601-021-01593-5.
     Google Scholar
  16. E.P. Inyang, E. P. Inyang, E.S. William, E.E. Ibekwe, and I.O. Akpan,” Analytical Investigation of Meson Spectrum via Exact Quantization Rule Approach”.2020. arXiv:2012.10639.
     Google Scholar
  17. E.P. Inyang, E.P. Inyang, J.E. Ntibi, E.E., Ibekwe, and E.S. William, “Approximate solutions of D-dimensional Klein-Gordon equation with Yukawa potential via Nikiforov-Uvarov method”. Indian Journal of Physics. 2021 https://doi.org/10.1007/s12648-020-01933-x.
     Google Scholar
  18. E.E. Ibekwe, U.S. Okorie, J.B. Emah, E.P. Inyang and S.A. Ekong, Mass spectrum of heavy quarkonium for screened Kratzer potential (SKP) using series expansion method. Eur. Phys. J. Plus, 87(2021)136. https://doi.org/10.1140/epjp/s13360-021-01090-y.
     Google Scholar
  19. E. P. Inyang, E. P. Inyang, I. O. Akpan, J. E. Ntibi, E. S. William, Analytical solutions of the Schrödinger equation with class of Yukawa potential for a quarkonium system via series expansion method. EJ. Physics. 2 (2020) 26.http://dx.doi.org/10.24018/ejphysics.2020.2.6.26.
     Google Scholar
  20. E.P. Inyang, E.P. Inyang, J. Kamiliyus, J.E. Ntibi, & E.S. William, Diatomic Molecules and Mass Spectrum of Heavy Quarkonium system with Kratzer- screened Coulomb Potential (KSCP) through the solutions of the Schrödinger equation. EJ-Physics 3(2) (2021)55.
     Google Scholar
  21. C.O. Edet, U.S. Okorie, G. Osobonye, A.N. Ikot, G.J. Rampho and R. Sever, Thermal properties of Deng–Fan–Eckart potential model using Poisson summation approach, J. Math. Chem. 58 (2020) 989. https://doi.org/10.1007/s10910-020-01107-4.
     Google Scholar
  22. E.P. Inyang, E.P. Inyang, J.E. Ntibi, and E.S. William, Analytical solutions of Schrodinger equation with Kratzer-screened Coulomb potential to the Quarkonium systems (2021) arXiv:2101.01174.
     Google Scholar
  23. C.O. Edet, U.S. Okorie, G. Osobonye, A.N. Ikot, G.J. Rampho and R. Sever, Thermal properties of Deng–Fan–Eckart potential model using Poisson summation approach, J. Math. Chem. 58 (2020) 989. https://doi.org/10.1007/s10910-020-01107-4.
     Google Scholar
  24. Edet, C. O., & Ikot, A. N. (2021). Effects of Topological Defect on the Energy Spectra and Thermo-magnetic Properties of $$ CO $$ CO Diatomic Molecule. Journal of Low Temperature Physics, 203, 84–111 (2021). https://doi.org/10.1007/s10909-021-02577-9.
     Google Scholar
  25. E.P.Inyang ,E.P.Inyang, J.E.Ntibi, E.E.Ibekwe & E.S. William,Analytical study on the Applicability of Ultra Generalized Exponential Hyperbolic potential to predict the mass spectra of the heavy mesons.arXiv:2101.06389.
     Google Scholar
  26. Ikot, A. N., Edet, C. O., Okorie, U. S., Abdel-Aty, A. H., Ramantswana, M., Rampho, G. J., Alshehri, N. A., Elagan, S. K.& Kaya, S. (2021). Solutions of the 2D Schrodinger equation and its thermal properties for Improved Ultra Generalized Exponential Hyperbolic potential (IUGE-HP). Eur. Phys. J. Plus 136(2021) 434.
     Google Scholar
  27. https://doi.org/10.1140/epjp/s13360-021-01408-w.
     Google Scholar
  28. E. P. Inyang, J. E. Ntibi, E.A. Ibanga, F. Ayedun, E. P. Inyang, E.E. Ibekwe, E. S. William & I.O. Akpan. “Thermodynamic properties and mass spectra of a quarkonium system with Ultra Generalized Exponential- Hyperbolic potential”. Communication in Physical Science, 2021, 7(2), pp. 97-114.
     Google Scholar
  29. I.O. Akpan, E.P. Inyang, E.P. Inyang and E.S. William, Approximate solutions of the Schrödinger equation with Hulthen-Hellman potentials for a Quarkonium system. Rev.Max.Fis. 67(3), 482-490 (2021).https://doi.org/10.31349/RevMaxFis.67.482.
     Google Scholar
  30. Ikot, A. N., Edet, C. O., Okorie, U. S., Abdel-Aty, A. H., Ramantswana, M., Rampho, G. J., Alshehri, N. A., Elagan, S. K.& Kaya, S. (2021). Solutions of the 2D Schrodinger equation and its thermal properties for Improved Ultra Generalized Exponential Hyperbolic potential (IUGE-HP). Eur. Phys. J. Plus 136(2021) 434. https://doi.org/10.1140/epjp/s13360-021-01408-w.
     Google Scholar
  31. K. J. Oyewumi and K. D. Sen, Exact solutions of the Schrödinger equation for the pseudoharmonic potential:an application to some diatomic molecules. Journal of Mathematical Chemistry. vol. 50, pp. 1039-1059, 2012.
     Google Scholar
  32. E.S. William, J.A. Obu, I.O. Akpan, E.A. Thompson, and E.P. Inyang, Analytical Investigation of the Single-particle energy spectrum in Magic Nuclei of 56Ni and 116Sn. European Journal of Applied Physics. vol. 2, 28, 2020.
     Google Scholar
  33. Wen, X. J., Zhong, X. H., Peng, G.X., Shen, P.N. & Ning, P. Z. (2005). Thermodynamics with density and temperature dependent particle masses and properties of bulk strange quark matter and strangelets. Chinese Physics Letters, 26, 235-246.
     Google Scholar
  34. Ita B.I., Ikeuba, A.I and Ikot, A.N Solutions of the Schrodinger equation with quantum mechanical plus harmonic oscillator potential. Commun. Theor. Phys. 61:149-152.
     Google Scholar
  35. K. J. Oyewumi and K. D. Sen, Exact solutions of the Schrödinger equation for the pseudoharmonic potential:an application to some diatomic molecules. Journal of Mathematical Chemistry. vol. 50, pp. 1039-1059, 2012.
     Google Scholar
  36. E.S. William, E.P. Inyang, and E.A. Thompson, “Arbitrary -solutions of the Schrödinger equation interacting with Hulthén-Hellmann potential model”. Revista Mexicana de Fisica. Vol. 66(6), pp. 730-741, Nov. 2020.
     Google Scholar
  37. Edet, C. (2020). Effects of Magnetic and Aharanov-Bohm (AB) Fields on the Energy Spectra of the Yukawa Potential. arXiv preprint arXiv:2012.08644.
     Google Scholar
  38. Ikot A.N, Antia A.D, Akpabio L. E and Obu J. A, Analytical solutions of Schrodinger equation with Two-dimensional harmonic potential in Cartesian and polar coordinates via Nikiforov-Uvarov method. Journal of Vectorial Relativity 6(2), 65-76, 2011.
     Google Scholar
  39. A. Arda and R.Sever, Exact solutions of Schrödinger equation via Laplace transform approach:pseudoharmonic potential and Mie-type potentials. Journal of Mathematical Chemistry. vol. 50, pp. 971-980, 2012.
     Google Scholar
  40. A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics (Birkhauser: Bassel)1988.
     Google Scholar
  41. A. N. Ikot, L. E. Akpabio, K. Essien, E. E. Ituen and I. B. Obot, Variational Principle Techniques and the Properties of a cut-off and Anharmonic wave function. E-Journal of Chemistry, Vol. 6, pp. 113-119, 2009.
     Google Scholar
  42. S. W. Qian, B. W. Huang & Z.Y. Gu., Supersymmetry and shape invariance of the effective screened potential. New Journal of Physics, 4, 13-19, 2002.
     Google Scholar
  43. W.C. Qiang & S. H. Dong, Analytical approximations to the solutions of the Hulthen potential with centrifugal term. Physics Letters A, 368, 13-17. 2007.
     Google Scholar
  44. Ikhdair S M and Sever R 2008Int. J. Mod. Phys.191425 S. M. Ikhdair and R. Sever, Exact quantization rule to the Kratzer- type potentials: an application to the diatomic molecules. Journal of Mathematical Chemistry, vol. 45, pp. 1137-2009, 2009.
     Google Scholar