Analytical Investigation of the Single-Particle Energy Spectrum in Magic Nuclei of ⁵⁶Ni and ¹¹⁶Sn
##plugins.themes.bootstrap3.article.main##
The analytical solutions of the radial D-dimensional Schrödinger equation for the Yukawa potential plus spin-orbit and Coulomb interaction terms are presented within the framework of the Nikiforov-Uvarov method by using the Greene-Aldrich approximation scheme to the centrifugal barrier. The energy eigenvalues obtained are employed to calculate the single-energy spectrum of ⁵⁶Ni and ¹¹⁶Sn for distinct quantum states. We have also obtained corresponding normalized wave functions for the magic nuclei manifested in terms of Jacobi polynomials. However, the energy spectrum without Spin-orbit and Coulomb interaction terms precisely matches the quantum mechanical system of the Yukawa potential field at any arbitrary state.
References
-
S. M. Lenzi and M. A. Bentley, “Isobaric analogue states studied in mirrored fragmentation and knockout reactions,” Mod. phys lett A, 1891–1894 (2010).
Google Scholar
1
-
E. B. Suckling, “Nuclear Structure and Dynamics from the Fully Unrestricted Skyrme-Hartree-Fock Model,” Ph. D thesis, Department of Physics, University of Surrey, 2011.
Google Scholar
2
-
V. F. Robert and R. V. F. Janssens, Elusive magic number, Nature 435, 897–898 (2005).
Google Scholar
3
-
K. S. Krane, Introductory Nuclear Physics, New York, 3rd edn, John Wiley & sons Inc, D Hallidays, 1988.
Google Scholar
4
-
M. Goeppert-Meyer, On Closed Shells in Nuclei, Phys. Rev. 75 (1949).
Google Scholar
5
-
M. Goeppert-Mayer, and J. Jensen, Elementary theory of nuclear shell structure, New York, Wiley, 224, (1955).
Google Scholar
6
-
V. G. Solov’ev, Theory of atomic nuclei, England, Inst. Phys, 33, (1992).
Google Scholar
7
-
P. Ring, and P Schuck, The nuclear many-body problem, New York, Springer-Verlag, 42, (1980).
Google Scholar
8
-
H. Heylen, Ground state properties near the N = 20 and N = 40 islands of inversion, PhD dissertation, University of Liverpool, Ku Leuven, Arenberg Doctorial school, (2016).
Google Scholar
9
-
R. V. F. Janssens, Unexpected doubly magic nucleus, Nature news and views 459 (2009).
Google Scholar
10
-
S. G. Nilsson and I. Ragnarsson, Shapes and Shells in Nuclear Structure, Cambridge, Cambridge University Press, 100, (1995).
Google Scholar
11
-
R. D. Rietz, Effective Charges Near 56Ni and production of anti-nuclei studied with heavy-ion reactions A Ph. D thesis, USA, Department of Physics Lund University, (2005).
Google Scholar
12
-
R. C. Cockrell, Ab Initio Nuclear Structure Calculations for Light Nuclei Graduate Theses, Iowa State University, 12654 (2012).
Google Scholar
13
-
A. Belyaev, Nucl. Part. Phys. S 3002, 1-163 (2015).
Google Scholar
14
-
K. M. Hanna, S. H. M. Sewailem, R. Hussien, L. I. Abou-Salem, and A. G. Shalaby, The Ground-State Calculations for Some Nuclei by Mesonic Potential of Nucleon-Nucleon Interaction. Adv. High Energy Phys, 1-15 (2020).
Google Scholar
15
-
S. Bogner, T. T. S. Kuo, L. Coraggio, A. Covello, and N. Itaco, Low momentum nucleon-nucleon potential and shell model effective interactions, Phys. Rev. C 65, 5, 1-5 (2002).
Google Scholar
16
-
B. B. Sahu, S. K. Singh, M. Bhuyan, S. K. Biswal, and S. K. Patra, Importance of nonlinearity in the NN potential, Phys. Rev. C 89, 1-8 034614 (2014).
Google Scholar
17
-
A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics, Birkhauser, Basel, (1988).
Google Scholar
18
-
C. O. Edet, U. S. Okorie, A. T. Ngiangia, A. T. Ngiangia and A. N. Ikot, “Bound state solutions of the Schrodinger equation for the modified Kratzer potential plus screened Coulomb potential,” Indian J Phys,94, 425-433 (2019).
Google Scholar
19
-
E. S. William, E. P. Inyang, E. A. Thompson, Arbitrary -solutions of the Schrödinger equation interacting with Hulthén-Hellmann potential model, Rev Mex Fis, 66,6, 1-11 (2020).
Google Scholar
20
-
E. P. Inyang et al. Any State Solutions of the Schrödinger equation interacting with class Of Yukawa - Eckart potentials. Intl J. Innov Sci, Engr. Tech.7, 11 (2020).
Google Scholar
21
-
E. P. Inyang, E. P. Inyang, I. O. Akpan, J. E. Ntibi and E. S. Willam, Analytical solutions of the Schrodinger equation with class of Yukawa potential for a quarkonium system via series expansion method, European J. of Applied Phys. (2020).
Google Scholar
22
-
C. A. Onate, and M. C. Onyeaju, Dirac particles in the field of Frost-Musulin diatomic potential and the thermodynamic properties via parametric Nikiforov-Uvarov method, Sri. J. Phys.17, 1-17 (2016).
Google Scholar
23
-
E. P. Inyang, E. P. Inyang, E. S. William and E. E. Ibekwe, Study on the applicability of Varshn potential to predict the mass spectra of quark-antiquark systems in non-relativistic framework, Jord. J. Phys. (2020) JJ14-11-10-020.
Google Scholar
24
-
K. J. Oyewumi, B. J. Falaye, C. A. Onate, O. J. Oluwadare and W. A. Yahya, Thermodynamic properties and the approximate solutions of the Schrödinger equation with the shifted Deng–Fan potential model, Mol. Phys. 112, 127-141 (2014).
Google Scholar
25
-
Bayrak, and I. Boztosun, Bound state solutions of the Hulthén potential by using the asymptotic iteration method, Phys. Scr. 76, 1, 92-96 (2007).
Google Scholar
26
-
E Ateser, H Ciftci, M U gurlu Chin. J. Phys. 45 (2007).
Google Scholar
27
-
M. Aygun, O. Bayrak, and I. Boztosun, Journal of Physics B: Atomic, Molecular and Optical Physics solution of the radial Schrödinger equation for the potential family V(r) = A/r2 –B/r +Crk using the asymptotic iteration method, J. Phys. B Mol. Opt. Phys. 40, 537-544 (2007).
Google Scholar
28
-
H. Hassanabadi, S. Zarrinkamar, B. H. Yazarloo, Spectrum of a Hyperbolic Potential via SUSYQM within the Semi-Relativistic Formalism, Chin. J. Phys. 50,5 1-7 (2012).
Google Scholar
29
-
A. N. Ikot, H. P. Obong, H. Hassanabadi, Relativistic Symmetries of (D+1D+1) Dimensional Dirac Equation with Multiparameter Exponential-Type Potentials Using Supersymmetric Quantum Mechanics, Few-Body Syst. 56,185–196 (2015).
Google Scholar
30
-
C. A. Onate and J. O. Ojonubah, Relativistic and non-relativistic solutions of the generalized Poschl-Teller and Hyperbolic potentials, Intl. J. Mod.Phys. E, 24, 1-16 (2015).
Google Scholar
31
-
S. H. Dong, Factorization Method in Quantum Mechanics, Brelin, Springer, 1-295 (2007).
Google Scholar
32
-
C. O. Edet, and P. O. Okoi, Any l-state solutions of the Schrödinger equation for q-deformed Hulthen plus generalized inverse quadratic Yukawa potential in arbitrary dimensions Rev. Mex. de Fis. 65 (2019).
Google Scholar
33
-
S. H. Dong, Wave Equation in Higher Dimensions, Berlin, 1-299 (Springer, 2011).
Google Scholar
34
-
M. R. Pahlavani and S A. Alavi, Solutions of Woods-Saxoon potential with spin-orbit and centrifugal terms through Nikiforov-Uvarov method, Comm. Theor. Phys, 58, 5, 739-743 (2012).
Google Scholar
35
-
A. A. Ribha, Nuclear Physics; Chapter 2: Binding Energy & Nuclear Models, Al-Mustansiriyah University, College of Science Physics Department, 1-29 (2016).
Google Scholar
36
-
T. Otsuka, R. Fujimoto, Y. Utsuno et al. Magic Numbers in Exotic Nuclei and Spin-Isospin Properties of the NN Interaction, Phys. Rev. Lett. 87, 8. 1-4 (2001).
Google Scholar
37
-
R. Gupta and S. S. Malik Rev. Mexi. de Fis. 66 1 (2020).
Google Scholar
38
-
H. Yukawa, On the interaction of elementary particles, Proc. Phys. Math. Soc. 17 48, (1935).
Google Scholar
39
-
J. C. Del Valle, and D. J. Nader, Radial anharmonic oscillator: Perturbation theory, new semiclassical expansion, approximating eigenfunctions. I. Generalities, cubic anharmonicity case, Intl. J. Mod. Phys. 5, 1-43 (2018).
Google Scholar
40
-
Y. Li, X. Luo, and H. Kröger, Bound states and critical behavior of the Yukawa potential. Sci China Ser G 49, 60–71 (2006).
Google Scholar
41
-
M. Hamzavi, K. E. Thylwe, and A. A. Rajabi, Approximate Bound States Solution of the Hellmann Potential, Comm. Theor. Phys. 60,1, 1-8 (2013).
Google Scholar
42
-
M. Falek, N. Belghar, and M. Moumni, Exact solution of Schrödinger equation in (anti-)de Sitter spaces for hydrogen atom, Eur. Phys. J. Plus 135 335, 1-12 (2020).
Google Scholar
43
-
A. Niknam, A. A. Rajabi, M. Solaimani, Solutions of D-dimensional Schrodinger equation for Woods– Saxon potential with spin–orbit, coulomb and centrifugal terms through a new hybrid numerical fitting Nikiforov–Uvarov method J. Theor. Appl. Phys. 10, 53–59 (2016).
Google Scholar
44
-
R. L. Greene and C. Aldrich, R. L. Greene and C. Aldrich Phys. Rev. A 14, 2363 (1976) Phys. Rev. A 14, 2363 (1976).
Google Scholar
45
-
S. H. Dong, W. C. Qiang, G. H. Sun, V. R. Bezerra, J. Phys A: Math. Theo, Analytical approximations to the l-wave solutions of the Schrödinger equation with the Eckart potential, J. Phys. A 40, 1-7 (2007).
Google Scholar
46
-
Ebomwonyi, C. A. Onate, M. C. Onyeaju, A. N. Ikot, Any l-states solutions of the Schrodinger equation interacting with Hellmann-generalized Morse potential model Karbala Intl. J. Mod. Sci 3, 1-10 (2017).
Google Scholar
47
-
A. Tas, O. Aydogdu, and M. Salti, Relativistic spinless particles with position dependent mass: Bound states and scattering phase shift, J. Korean Phys. Soci, 70, 896–904 (2017).
Google Scholar
48
-
A. D. Antia, E. E. Umo, C. C. Umoren, Solutions of nonrelativistic Schrödinger equation with Hulthen-Yukawa plus angle dependent potential within the framework of Nikiforov-Uvarov method, J. Theor. Phys. Crypt 10, 1-8, (2015).
Google Scholar
49
-
M. Hamzavi, M. Movahedi, K. E. Thylwe, and A. A. Rajabi, Approximate Analytical Solution of the Yukawa Potential with Arbitrary Angular Momenta, Chinese Phys. Lett. 29,8, 1-5, (2012).
Google Scholar
50
-
E. Z. Liverts et al, Analytic presentation of a solution of the Schrodinger equation, Few-body syst, 44, 367-370 (2008).
Google Scholar
51
-
S. M. Ikhdair, Approximateκ-state solutions to the Dirac-Yukawa problem based on the spin and pseudospin symmetry, 10(2), 361–381 (2012).
Google Scholar
52
-
B. I. Ita et al. Bound State Solutions of the Schrödinger Equation for the More General Exponential Screened Coulomb Potential Plus Yukawa (MGESCY) Potential Using Nikiforov-Uvarov Method, J. Quantum Inform. Sci. 8, 1, 24-45 (2018).
Google Scholar
53
-
C. A. Onate et al. Approximate eigensolutions of the attractive potential via parametric Nikiforov-Uvarov method, Heliyon 4 (2018).
Google Scholar
54
-
H. Mariji, The Calculation of Single-Nucleon Energies of Nuclei by Considering Two-Body Effective Interaction, and a Hartree-Fock Inspired Scheme, Adv. High Energy Phys. 2398198 (2016), 1-10.
Google Scholar
55
-
B. A. Brown, Lecture Notes in Nuclear Structure Physics 1, National Superconducting Cyclotron Laboratory, Michigan State University, Dept of Physics and Astronomy, E. Lansing, MI 48824 (2011).
Google Scholar
56
-
S. Fujii, R. Okamoto, and K. Suzuki, Ground-State and Single-Particle Energies of Nuclei around 16O, 40Ca, and 56Ni from Realistic Nucleon-Nucleon Forces Phys. Rev. Lett. 103, 182501 (2009).
Google Scholar
57
Most read articles by the same author(s)
-
E. P. Inyang,
E. P. Inyang,
I. O. Akpan,
J. E. Ntibi,
E. S. William,
Analytical Solutions of the Schrödinger Equation with Class of Yukawa Potential for a Quarkonium System Via Series Expansion Method , European Journal of Applied Physics: Vol. 2 No. 6 (2020) -
E. P. Inyang,
E. P. Inyang,
J. Karniliyus,
J. E. Ntibi,
E. S. William,
Diatomic Molecules and Mass Spectrum of Heavy Quarkonium System with Kratzer- Screened Coulomb Potential (KSCP) through the Solutions of the Schrödinger Equation , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
I. P. Etim,
E. P. Inyang,
E. A. Thompson,
Digital Data Acquisition for Gamma-Ray Spectroscopy , European Journal of Applied Physics: Vol. 4 No. 1 (2022) -
E. P. Inyang,
B. I. Ita,
E. P. Inyang,
Relativistic Treatment of Quantum Mechanical Gravitational-Harmonic Oscillator Potential , European Journal of Applied Physics: Vol. 3 No. 3 (2021) -
E. A. Thompson,
I. O. Akpan,
C. A. Thompson,
Arbitrary Solution of the Schrödinger Equation Interacting with the Superposition of Hulthen with Spin-orbit Plus Adjusted Coulomb Potential Model , European Journal of Applied Physics: Vol. 3 No. 6 (2021)