##plugins.themes.bootstrap3.article.main##

The analytical solutions of the radial D-dimensional Schrödinger equation for the Yukawa potential plus spin-orbit and Coulomb interaction terms are presented within the framework of the Nikiforov-Uvarov method by using the Greene-Aldrich approximation scheme to the centrifugal barrier. The energy eigenvalues obtained are employed to calculate the single-energy spectrum of ⁵⁶Ni and ¹¹⁶Sn for distinct quantum states. We have also obtained corresponding normalized wave functions for the magic nuclei manifested in terms of Jacobi polynomials. However, the energy spectrum without Spin-orbit and Coulomb interaction terms precisely matches the quantum mechanical system of the Yukawa potential field at any arbitrary state.

References

  1. S. M. Lenzi and M. A. Bentley, “Isobaric analogue states studied in mirrored fragmentation and knockout reactions,” Mod. phys lett A, 1891–1894 (2010).
     Google Scholar
  2. E. B. Suckling, “Nuclear Structure and Dynamics from the Fully Unrestricted Skyrme-Hartree-Fock Model,” Ph. D thesis, Department of Physics, University of Surrey, 2011.
     Google Scholar
  3. V. F. Robert and R. V. F. Janssens, Elusive magic number, Nature 435, 897–898 (2005).
     Google Scholar
  4. K. S. Krane, Introductory Nuclear Physics, New York, 3rd edn, John Wiley & sons Inc, D Hallidays, 1988.
     Google Scholar
  5. M. Goeppert-Meyer, On Closed Shells in Nuclei, Phys. Rev. 75 (1949).
     Google Scholar
  6. M. Goeppert-Mayer, and J. Jensen, Elementary theory of nuclear shell structure, New York, Wiley, 224, (1955).
     Google Scholar
  7. V. G. Solov’ev, Theory of atomic nuclei, England, Inst. Phys, 33, (1992).
     Google Scholar
  8. P. Ring, and P Schuck, The nuclear many-body problem, New York, Springer-Verlag, 42, (1980).
     Google Scholar
  9. H. Heylen, Ground state properties near the N = 20 and N = 40 islands of inversion, PhD dissertation, University of Liverpool, Ku Leuven, Arenberg Doctorial school, (2016).
     Google Scholar
  10. R. V. F. Janssens, Unexpected doubly magic nucleus, Nature news and views 459 (2009).
     Google Scholar
  11. S. G. Nilsson and I. Ragnarsson, Shapes and Shells in Nuclear Structure, Cambridge, Cambridge University Press, 100, (1995).
     Google Scholar
  12. R. D. Rietz, Effective Charges Near 56Ni and production of anti-nuclei studied with heavy-ion reactions A Ph. D thesis, USA, Department of Physics Lund University, (2005).
     Google Scholar
  13. R. C. Cockrell, Ab Initio Nuclear Structure Calculations for Light Nuclei Graduate Theses, Iowa State University, 12654 (2012).
     Google Scholar
  14. A. Belyaev, Nucl. Part. Phys. S 3002, 1-163 (2015).
     Google Scholar
  15. K. M. Hanna, S. H. M. Sewailem, R. Hussien, L. I. Abou-Salem, and A. G. Shalaby, The Ground-State Calculations for Some Nuclei by Mesonic Potential of Nucleon-Nucleon Interaction. Adv. High Energy Phys, 1-15 (2020).
     Google Scholar
  16. S. Bogner, T. T. S. Kuo, L. Coraggio, A. Covello, and N. Itaco, Low momentum nucleon-nucleon potential and shell model effective interactions, Phys. Rev. C 65, 5, 1-5 (2002).
     Google Scholar
  17. B. B. Sahu, S. K. Singh, M. Bhuyan, S. K. Biswal, and S. K. Patra, Importance of nonlinearity in the NN potential, Phys. Rev. C 89, 1-8 034614 (2014).
     Google Scholar
  18. A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics, Birkhauser, Basel, (1988).
     Google Scholar
  19. C. O. Edet, U. S. Okorie, A. T. Ngiangia, A. T. Ngiangia and A. N. Ikot, “Bound state solutions of the Schrodinger equation for the modified Kratzer potential plus screened Coulomb potential,” Indian J Phys,94, 425-433 (2019).
     Google Scholar
  20. E. S. William, E. P. Inyang, E. A. Thompson, Arbitrary -solutions of the Schrödinger equation interacting with Hulthén-Hellmann potential model, Rev Mex Fis, 66,6, 1-11 (2020).
     Google Scholar
  21. E. P. Inyang et al. Any State Solutions of the Schrödinger equation interacting with class Of Yukawa - Eckart potentials. Intl J. Innov Sci, Engr. Tech.7, 11 (2020).
     Google Scholar
  22. E. P. Inyang, E. P. Inyang, I. O. Akpan, J. E. Ntibi and E. S. Willam, Analytical solutions of the Schrodinger equation with class of Yukawa potential for a quarkonium system via series expansion method, European J. of Applied Phys. (2020).
     Google Scholar
  23. C. A. Onate, and M. C. Onyeaju, Dirac particles in the field of Frost-Musulin diatomic potential and the thermodynamic properties via parametric Nikiforov-Uvarov method, Sri. J. Phys.17, 1-17 (2016).
     Google Scholar
  24. E. P. Inyang, E. P. Inyang, E. S. William and E. E. Ibekwe, Study on the applicability of Varshn potential to predict the mass spectra of quark-antiquark systems in non-relativistic framework, Jord. J. Phys. (2020) JJ14-11-10-020.
     Google Scholar
  25. K. J. Oyewumi, B. J. Falaye, C. A. Onate, O. J. Oluwadare and W. A. Yahya, Thermodynamic properties and the approximate solutions of the Schrödinger equation with the shifted Deng–Fan potential model, Mol. Phys. 112, 127-141 (2014).
     Google Scholar
  26. Bayrak, and I. Boztosun, Bound state solutions of the Hulthén potential by using the asymptotic iteration method, Phys. Scr. 76, 1, 92-96 (2007).
     Google Scholar
  27. E Ateser, H Ciftci, M U gurlu Chin. J. Phys. 45 (2007).
     Google Scholar
  28. M. Aygun, O. Bayrak, and I. Boztosun, Journal of Physics B: Atomic, Molecular and Optical Physics solution of the radial Schrödinger equation for the potential family V(r) = A/r2 –B/r +Crk using the asymptotic iteration method, J. Phys. B Mol. Opt. Phys. 40, 537-544 (2007).
     Google Scholar
  29. H. Hassanabadi, S. Zarrinkamar, B. H. Yazarloo, Spectrum of a Hyperbolic Potential via SUSYQM within the Semi-Relativistic Formalism, Chin. J. Phys. 50,5 1-7 (2012).
     Google Scholar
  30. A. N. Ikot, H. P. Obong, H. Hassanabadi, Relativistic Symmetries of (D+1D+1) Dimensional Dirac Equation with Multiparameter Exponential-Type Potentials Using Supersymmetric Quantum Mechanics, Few-Body Syst. 56,185–196 (2015).
     Google Scholar
  31. C. A. Onate and J. O. Ojonubah, Relativistic and non-relativistic solutions of the generalized Poschl-Teller and Hyperbolic potentials, Intl. J. Mod.Phys. E, 24, 1-16 (2015).
     Google Scholar
  32. S. H. Dong, Factorization Method in Quantum Mechanics, Brelin, Springer, 1-295 (2007).
     Google Scholar
  33. C. O. Edet, and P. O. Okoi, Any l-state solutions of the Schrödinger equation for q-deformed Hulthen plus generalized inverse quadratic Yukawa potential in arbitrary dimensions Rev. Mex. de Fis. 65 (2019).
     Google Scholar
  34. S. H. Dong, Wave Equation in Higher Dimensions, Berlin, 1-299 (Springer, 2011).
     Google Scholar
  35. M. R. Pahlavani and S A. Alavi, Solutions of Woods-Saxoon potential with spin-orbit and centrifugal terms through Nikiforov-Uvarov method, Comm. Theor. Phys, 58, 5, 739-743 (2012).
     Google Scholar
  36. A. A. Ribha, Nuclear Physics; Chapter 2: Binding Energy & Nuclear Models, Al-Mustansiriyah University, College of Science Physics Department, 1-29 (2016).
     Google Scholar
  37. T. Otsuka, R. Fujimoto, Y. Utsuno et al. Magic Numbers in Exotic Nuclei and Spin-Isospin Properties of the NN Interaction, Phys. Rev. Lett. 87, 8. 1-4 (2001).
     Google Scholar
  38. R. Gupta and S. S. Malik Rev. Mexi. de Fis. 66 1 (2020).
     Google Scholar
  39. H. Yukawa, On the interaction of elementary particles, Proc. Phys. Math. Soc. 17 48, (1935).
     Google Scholar
  40. J. C. Del Valle, and D. J. Nader, Radial anharmonic oscillator: Perturbation theory, new semiclassical expansion, approximating eigenfunctions. I. Generalities, cubic anharmonicity case, Intl. J. Mod. Phys. 5, 1-43 (2018).
     Google Scholar
  41. Y. Li, X. Luo, and H. Kröger, Bound states and critical behavior of the Yukawa potential. Sci China Ser G 49, 60–71 (2006).
     Google Scholar
  42. M. Hamzavi, K. E. Thylwe, and A. A. Rajabi, Approximate Bound States Solution of the Hellmann Potential, Comm. Theor. Phys. 60,1, 1-8 (2013).
     Google Scholar
  43. M. Falek, N. Belghar, and M. Moumni, Exact solution of Schrödinger equation in (anti-)de Sitter spaces for hydrogen atom, Eur. Phys. J. Plus 135 335, 1-12 (2020).
     Google Scholar
  44. A. Niknam, A. A. Rajabi, M. Solaimani, Solutions of D-dimensional Schrodinger equation for Woods– Saxon potential with spin–orbit, coulomb and centrifugal terms through a new hybrid numerical fitting Nikiforov–Uvarov method J. Theor. Appl. Phys. 10, 53–59 (2016).
     Google Scholar
  45. R. L. Greene and C. Aldrich, R. L. Greene and C. Aldrich Phys. Rev. A 14, 2363 (1976) Phys. Rev. A 14, 2363 (1976).
     Google Scholar
  46. S. H. Dong, W. C. Qiang, G. H. Sun, V. R. Bezerra, J. Phys A: Math. Theo, Analytical approximations to the l-wave solutions of the Schrödinger equation with the Eckart potential, J. Phys. A 40, 1-7 (2007).
     Google Scholar
  47. Ebomwonyi, C. A. Onate, M. C. Onyeaju, A. N. Ikot, Any l-states solutions of the Schrodinger equation interacting with Hellmann-generalized Morse potential model Karbala Intl. J. Mod. Sci 3, 1-10 (2017).
     Google Scholar
  48. A. Tas, O. Aydogdu, and M. Salti, Relativistic spinless particles with position dependent mass: Bound states and scattering phase shift, J. Korean Phys. Soci, 70, 896–904 (2017).
     Google Scholar
  49. A. D. Antia, E. E. Umo, C. C. Umoren, Solutions of nonrelativistic Schrödinger equation with Hulthen-Yukawa plus angle dependent potential within the framework of Nikiforov-Uvarov method, J. Theor. Phys. Crypt 10, 1-8, (2015).
     Google Scholar
  50. M. Hamzavi, M. Movahedi, K. E. Thylwe, and A. A. Rajabi, Approximate Analytical Solution of the Yukawa Potential with Arbitrary Angular Momenta, Chinese Phys. Lett. 29,8, 1-5, (2012).
     Google Scholar
  51. E. Z. Liverts et al, Analytic presentation of a solution of the Schrodinger equation, Few-body syst, 44, 367-370 (2008).
     Google Scholar
  52. S. M. Ikhdair, Approximateκ-state solutions to the Dirac-Yukawa problem based on the spin and pseudospin symmetry, 10(2), 361–381 (2012).
     Google Scholar
  53. B. I. Ita et al. Bound State Solutions of the Schrödinger Equation for the More General Exponential Screened Coulomb Potential Plus Yukawa (MGESCY) Potential Using Nikiforov-Uvarov Method, J. Quantum Inform. Sci. 8, 1, 24-45 (2018).
     Google Scholar
  54. C. A. Onate et al. Approximate eigensolutions of the attractive potential via parametric Nikiforov-Uvarov method, Heliyon 4 (2018).
     Google Scholar
  55. H. Mariji, The Calculation of Single-Nucleon Energies of Nuclei by Considering Two-Body Effective Interaction, and a Hartree-Fock Inspired Scheme, Adv. High Energy Phys. 2398198 (2016), 1-10.
     Google Scholar
  56. B. A. Brown, Lecture Notes in Nuclear Structure Physics 1, National Superconducting Cyclotron Laboratory, Michigan State University, Dept of Physics and Astronomy, E. Lansing, MI 48824 (2011).
     Google Scholar
  57. S. Fujii, R. Okamoto, and K. Suzuki, Ground-State and Single-Particle Energies of Nuclei around 16O, 40Ca, and 56Ni from Realistic Nucleon-Nucleon Forces Phys. Rev. Lett. 103, 182501 (2009).
     Google Scholar