##plugins.themes.bootstrap3.article.main##

In this work, we obtain solutions of the Schrödinger equation with Kratzer-screened Coulomb potential (KSCP) model using the series expansion method. Explicitly, we compute the bound state energy eigenvalues for selected diatomic molecules of N2, CO, NO, and CH, respectively, for the various vibrational and rotational quantum states and the numerical energy eigenvalues agree with the existing literature. Three special cases were considered. The energy eigenvalues are applied to obtain the mass spectra of heavy quarkonium system such as charmonium and bottomonium. The results agree with the experimental data and other recent theoretical studies.

References

  1. S. Flugge, Practical Quantum Mechanics II, Springer, Berlin, 1971.
     Google Scholar
  2. A. Kratzer, Z. Phys. Vol.3 pp. 284-289,1920.
     Google Scholar
  3. H. Mutuk, Mass Spectra and Decay constants of Heavy-light Mesons:A case study of QCD sum Rules and Quark model, Advances in High Energy Physics. Vol. 20, 8095653 2018.
     Google Scholar
  4. H. Hassanabadi, H. Rahimov and S. Zarrinkamar, Approximate solution of D-Dimensional Klein-Gordon equation with Hulthen-Type potential via SUSYQM. Communication in Theoretical Physics. Vol.56, pp. 423-430,2011.
     Google Scholar
  5. S. A. Najafizade, H. Hassanabadi and S. Zarrinkamar, Nonrelativistic Shannon information entropy for Killingbeck potential. Canadian Journal of Physics. Vol.94, pp. 1085-1092, 2016.
     Google Scholar
  6. F Hoseini, J K Saho and H Hassanabadi, Comm. Theor. Phys. 65 695 (2016).
     Google Scholar
  7. E. Z. Liverts, E. G. Drukarev, R. Krivec and V. B. Mandelzweig, Analytic presentation of a solution of the Schrodinger equation. Few-Body Systems. Vol.44, pp. 367-370, 2008.
     Google Scholar
  8. C. A. Onate and J. O. Ojonubah, Eigen solutions of the Schrödinger equation with a class of Yukawa potentials via supersymmetric approach. Journal of Theoretical and Applied Physics. vol. 10, pp. 21-26, 2016.
     Google Scholar
  9. S. M. Ikhdair, “Relativistic bound states of spinless particle by the Cornell potential model in in external fields”. Advances in High Energy Physics 491648, 2013.
     Google Scholar
  10. C. Berkdemir, A. Berkdemir and R. Sever, Polynomial solutions of the Schrödinger equation for the generalized Woods-Saxon potential. Physical Review C. Vol.72, 027001, 2005.
     Google Scholar
  11. S. M. Ikhdair and R. Sever, Exact polynomial eigen solutions of the Schrödinger equation for the pseudoharmonic potential. Journal of Molecular Structure: THEOCHEM. Vol.806, pp. 155-158, 2007.
     Google Scholar
  12. H. Louis, B.I. Ita, O.U. Akakuru, N.A. Nzeata-Ibe, A.I. Ikeuba, T.O. Magu, P.I. Amos and C.O. Edet, l-state Solutions of the Relativistic and Non-Relativistic Wave Equations for Modified Hylleraas-Hulthen Potential Using the Nikiforov-Uvarov Quantum Formalism, Oriental J. Phys. Sci.3 (2018) 1. http://www.orientjphysicalsciesnces.org/.
     Google Scholar
  13. A. N. Ikot, L. E. Akpabio, K. Essien, E. E. Ituen and I. B. Obot, Variational Principle Techniques and the Properties of a cut-off and Anharmonic wave function. E-Journal of Chemistry, Vol. 6, pp. 113-119, 2009.
     Google Scholar
  14. R. L. Greene and C. Aldrich, Variational wave functions for a screened Coulomb potential. Physical Review A. Vol.14, pp. 2363-2366,1976.
     Google Scholar
  15. I. B. Okon, E. E. Ituen, O. Popoola and A. D. Antia, Analytical solutions of Schrödinger equation with Mie-type potential using factorization method. International Journal of Recent Advances in Physics. Vol. 2, pp. 1-7, 2013.
     Google Scholar
  16. E. S. William, E.P. Inyang, and E. A. Thompson, “Arbitrary -solutions of the Schrödinger equation interacting with Hulthén-Hellmann potential model”. Revista Mexicana de Fisica. Vol.66(6) pp. 730-741, Nov. 2020.
     Google Scholar
  17. E. P. Inyang, E. P. Inyang, E. S. William, and E. E. Ibekwe, “Study on the applicability of Varshni potential to predict the mass-spectra of the Quark-Antiquark systems in a non-relativistic framework” Jordan Journal of Physics. Vol.14(4), pp. 337-345, 2021.
     Google Scholar
  18. M. Abu-Shady, Analytic solution of Dirac Equation for extended Cornell Potential using the Nikiforov-Uvarov method. Boson Journal of modern Physics. 55(1), pp. 789-799, 2015.
     Google Scholar
  19. S. M. Ikhdair and R. Sever, Approximate bound state solutions of Dirac equation with Hulthen potential including Coulomb-like tensor potential. Applied Mathematics and Computation. Vol. 216, pp. 911-923, 2010.
     Google Scholar
  20. C.O. Edet and P.O. Okoi, “Any l-state solutions of the Schrödinger equation for q-deformed Hulthen plusgeneralized inverse quadratic Yukawa potential in arbitrary dimensions”. Revista Mexicana Fisica 65 pp. 333-344, 2019.
     Google Scholar
  21. I. O. Akpan, E. P. Inyang, E. P. Inyang and E. S. William, Approximate solutions of the Schrödinger equation with Hulthen-Hellman potentials for a Quarkonium system. arXiv:2101.01175, 2021.
     Google Scholar
  22. Ikot, A. N., Okorie, U. S., Ngiagian, A. T., Onate, C. A., Edet, C. O., Akpan, I. O., and Amadi, P. O. (2020) Bound state solutions of the Schrödinger equation with energy-dependent molecular Kratzer potential via Asymptotic iteration method. Ecletica Quimica Journal 45(1), 66-76.
     Google Scholar
  23. C. M. Ekpo, E. P. Inyang, P. O. Okoi, et al., New Generalized Morse-Like potential for studying the Atomic interaction in Diatomic Molecules. http://arXiv:2012.02581, 2020.
     Google Scholar
  24. J. E. Ntibi, E. P. Inyang, E. P. Inyang, and E. S. William, Relativistic Treatment of D-Dimensional Klien-Gordon equation with Yukawa potential. International Journal of Innovative Science, Engineering & Technology Vol. 11(7), pp. 2348-7968, 2020.
     Google Scholar
  25. E. S. William, J. A. Obu, I. O. Akpan, E. A. Thompson, and E. P. Inyang, Analytical Investigation of the Single-particle energy spectrum in Magic Nuclei of 56Ni and 116Sn. European Journal of Applied Physics. vol. 2 ,28, 2020.
     Google Scholar
  26. E. P. Inyang, E. S. William and J. A. Obu, Eigensolutions of the N-dimensional Schrödinger equation interacting with Varshni-Hulthen potential model. Revista Mexicana de Fisica. Vol. 67(2) pp. 193-205, 2021.
     Google Scholar
  27. B.I. Ita, H. Louis, O.U. Akakuru, N.A. Nzeata-Ibe, A.I. Ikeuba, T.O. Magu, P.I. Amos and C.O. Edet, Approximate Solution to the Schrödinger Equation with Manning-Rosen plus a Class of Yukawa Potential via WKBJ Approximation Method, Bulg. J. Phys. 45 (2018) 323. https://www.bjp-bg.com/paper1.php?id=914.
     Google Scholar
  28. Edet, C. (2020). Effects of Magnetic and Aharanov-Bohm (AB) Fields on the Energy Spectra of the Yukawa Potential. arXiv preprint arXiv:2012.08644.
     Google Scholar
  29. C. O. Edet, A. N. Ikot, “Shannon information entropy in the presence of magnetic and Aharanov–Bohm (AB) fields”. Eur. Phys. J. Plus 136 (2021) 432. https://doi.org/10.1140/epjp/s13360-021-01438-4.
     Google Scholar
  30. H. Louis, B. I. Ita, T. O. Magu, O. U. Akakuru, N. A. Nzeata-Ibe, A. I. Ikeuba, A. I. Pigweh and C. O. Edet, Solutions to the Dirac Equation for Manning-Rosen Plus Shifted Deng-Fan Potential and Coulomb-Like Tensor Interaction Using Nikiforov-Uvarov Method, Intl. J. Chem. 10 (2018) 99, https://doi.org/10.5539/ijc.v10n3p99.
     Google Scholar
  31. E. P. Inyang, J. E. Ntibi, E. P. Inyang, E. S. William, and C. C. Ekechukwu, Any L-state solutions of the Schrödinger equation interacting with class of Yukawa-Eckart potentials. International Journal of Innovative Science, Engineering & Technology Vol. 11(7), 2432, 2020.
     Google Scholar
  32. C. O. Edet, P. O. Okoi and S. O. Chima, “Analytic solutions of the Schrödinger equation with non-central generalized inverse quadratic Yukawa potential”. Revista Brasileira de Ensino de Fisica pp. 1-9, 2019.
     Google Scholar
  33. Ikot, A. N., Okorie, U. S., Amadi, P. O., Edet, C. O., Rampho, G. J., & Sever, R. (2021). The Nikiforov–Uvarov-Functional Analysis (NUFA) Method: A New Approach for Solving Exponential-Type Potentials. Few-Body Systems, 62(1), 1-16.
     Google Scholar
  34. E. E. Ibekwe, T. N. Alalibo, S. O. Uduakobong, A. N. Ikot and N. Y. Abdullah, “Bound state solution of radial Schrödinger equation for the quark-antiquark interaction potential”. Iran Journal of Science Technology 20-00913, 2020.
     Google Scholar
  35. E. P. Inyang, E. P. Inyang, E. S. William, E. E. Ibekwe, and I. O. Akpan, “Analytical Investigation of Meson Spectrum via Exact Quantization Rule Approach”.2020. arXiv:2012.10639.
     Google Scholar
  36. S. M. Ikhdair, B. J. Falaye and M. Hamzavi, Nonrelativistic molecular models under external magnetic and AB flux fields. Annals of Physics. vol. 353, pp. 282-298, 2015.
     Google Scholar
  37. C. O. Edet, U. S. Okorie, A. T. Ngiangia, and A. N. Ikot, “Bound state solutions of the Schrödinger equation for the modified Kratzer plus screened Coulomb potential”. Indian Journal of Physics 94, pp. 423- 433, 2020.
     Google Scholar
  38. H. Louis, B.I. Ita, O.U. Akakuru, N.A. Nzeata-Ibe, A.I. Ikeuba, T.O. Magu, P.I. Amos and C.O. Edet, l-state Solutions of the Relativistic and Non-Relativistic Wave Equations for Modified Hylleraas-Hulthen Potential Using the Nikiforov-Uvarov Quantum Formalism, Oriental J. Phys. Sci.3 (2018) 1. http://www.orientjphysicalsciesnces.org/.
     Google Scholar
  39. K. J. Oyewumi and K. D. Sen, Exact solutions of the Schrödinger equation for the pseudoharmonic potential: an application to some diatomic molecules. Journal of Mathematical Chemistry. vol. 50, pp. 1039-1059, 2012.
     Google Scholar
  40. A. Arda and R.Sever, Exact solutions of Schrödinger equation via Laplace transform approach: pseudoharmonic potential and Mie-type potentials. Journal of Mathematical Chemistry. vol. 50, pp. 971-980, 2012.
     Google Scholar
  41. S.M. Ikhdair and R. Sever, Polynomial solutions of the Mie-type potential in the D-dimensional Schrodinger equation. Journal of Molecular Structure: THEOCHEM. Vol. 855, pp. 13-17, 2008.
     Google Scholar
  42. S. M. Ikhdair and R. Sever, Exact quantization rule to the Kratzer- type potentials: an application to the diatomic molecules. Journal of Mathematical Chemistry. vol. 45, pp. 1137-2009, 2009.
     Google Scholar
  43. A. Vega, and J. Flores, “Heavy quarkonium properties from Cornell potential using variational method and Supersymmetric quantum mechanics”. Pramana-Journal of Physics, vol. 56, pp. 456-467, 2016.
     Google Scholar
  44. H.Ciftci and H. F. Kisoglu, “Schrödinger equation for the Cornell potential by the Asymptotic Iteration method”, Pramana Journal Physics. vol. 57, pp. 458- 467, 2018.
     Google Scholar
  45. A. Al-Oun, A. Al-Jamel and H. Widyan, “Various properties of Heavy Quakonium from Flavor-independent Coulomb plus Quadratic potential”. Jordan Journal of Physics, 40, 453-464, 2015.
     Google Scholar
  46. E. Omugbe, O. E. Osafile and M. C. Onyeajh, “Mass spectrum of mesons via WKB Approximation method”. Advance in High Energy. Phys.10 1143-1155, 2020.
     Google Scholar
  47. E. P. Inyang, E. P. Inyang, J. E. Ntibi, E. E., Ibekwe, and E. S. William, “Approximate solutions of D-dimensional Klein-Gordon equation with Yukawa potential via Nikiforov-Uvarov method”. Indian Journal of Physics. 2021 https://doi.org/10.1007/s12648-020-01933-x.
     Google Scholar
  48. M. AbuShady, and E. M. Khokha, “Diatomic Molecules and Heavy mesons for the Generalized Cornell Potential model within the Dirac equation”. https://www.reseachgate.net/publication/348688282.
     Google Scholar
  49. E. E. Ibekwe, U. S. Okorie, J. B. Emah, E. P. Inyang and S. A. Ekong, Mass spectrum of heavy quarkonium for screened Kratzer potential (SKP) using series expansion method. Eur. Phys. J. Plus 87(2021)136. https://doi.org/10.1140/epjp/s13360-021-01090-y.
     Google Scholar
  50. E. P. Inyang, E. P. Inyang, I. O. Akpan, J. E. Ntibi, E. S. William, Analytical solutions of the Schrödinger equation with class of Yukawa potential for a quarkonium system via series expansion method. EJ. Physics. 2 (2020) 26. http://dx.doi.org/10.24018/ejphysics.2020.2.6.26/.
     Google Scholar
  51. C. A. Onate, O. Ebomwonyi, K. O. Dopamu, J. O. Okoro and M. O. Oluwayemi, Eigen solutions of the D-dimensional Schrödinger equation with inverse trigonometry scarf potential and Coulomb potential.Chinese Journal of Physics. Vol.56, pp. 2538-2546, 2018.
     Google Scholar
  52. H. Mansour and A. Gamal, “Bound state of Heavy Quarks using a General polynomial potential”. Advanace in High energy Physics. vol. 65, pp. 1234-1324, 2018.
     Google Scholar
  53. R. Rani, S. B. Bhardwaj, and F. Chand, “Mass spectra of heavy and light mesons using Asymptotic Iteration Method”. Communication in Theoretical Physics. Vol.70(2), pp. 168-179, 2018.
     Google Scholar
  54. R. Kumar, and F. Chand, “Asymptotic study to the N-dimensional Radial Schrodinder Equation for the quark-antiquark system”. Communication in Theoretical Physics, vol.59, pp. 456-467, 2014.
     Google Scholar
  55. C. Berkdemir, A. Berkdemir and J. Han, Bound state solutions of the Schrödinger equation for modified Kratzer Molecular potential. Chemical Physics Letters. vol. 417, pp. 326-329, 2006.
     Google Scholar
  56. M. Abu-Shady, “Heavy Quarkonia and bc ̅ mesons in the Cornell potential with Harmonic Oscillator potential in the N – dimensional Schrodinger Equation”. International Journal of applied mathematics and Theoretical Physics, vol. 2, pp. 16-20, 2016.
     Google Scholar
  57. E. P. Inyang, E. P. Inyang, I. O. Akpan, J. E. Ntibi and E. S. William, (2020). Analytical solutions of the Schrödinger equation with class of Yukawa potential for a Quarkonium system via series expansion method”. European Journal of Applied Physics. Vol. 2, 2020 http://dx.doi.org/10.24018/ejphysics.2020.2.6.26.
     Google Scholar
  58. R. M. Barnett, C.D. Carone, D. E. Groom, T. G. Trippe, and C.G. &Wohl, (2012). “Particle Data Group”. Physics Review D. vol. 92, pp. 654-656, 2012.
     Google Scholar
  59. M. Tanabashi, C. D. Carone, T. G. Trippe, and C. G. Wohl, “Particle Data Group”. Physics Review D 98, pp. 546-548, 2018.
     Google Scholar
  60. C. O. Edet, U. S. Okorie, G. Osobonye, A. N. Ikot, G. J. Rampho and R. Sever, Thermal properties of Deng–Fan–Eckart potential model using Poisson summation approach, J. Math. Chem. 58 (2020) 989. https://doi.org/10.1007/s10910-020-01107-4.
     Google Scholar
  61. C. O. Edet, P. O. Amadi, U. S. Okorie, A. Tas, A.N. Ikotand G. Rampho, Solutions of Schrödinger equation and thermal properties of generalized trigonometric P¨oschl-Teller potential. (2020). Rev. Mex. Fıs. 66 (2020) 824. https://doi.org/10.31349/RevMexFis.66.824.
     Google Scholar
  62. C. O. Edet, U. S. Okorie, G. Osobonye, A. N. Ikot, G. J. Rampho and R. Sever, Thermal properties of Deng–Fan–Eckart potential model using Poisson summation approach, J. Math. Chem. 58 (2020) 989. https://doi.org/10.1007/s10910-020-01107-4.
     Google Scholar
  63. Edet, C. O., & Ikot, A. N. (2021). Effects of Topological Defect on the Energy Spectra and Thermo-magnetic Properties of $$ CO $$ CO Diatomic Molecule. Journal of Low Temperature Physics, 203, 84–111 (2021). https://doi.org/10.1007/s10909-021-02577-9.
     Google Scholar
  64. Edet, C. O., Ikot, A. N., Onyeaju, M. C., Okorie, U. S., Rampho, G. J., Lekala, M. L., & Kaya, S. (2021). Thermo-magnetic properties of the screened Kratzer potential with spatially varying mass under the influence of Aharanov-Bohm (AB) and position-dependent magnetic fields. Physica E: Low-dimensional Systems and Nanostructures, 131, 114710. https://doi.org/10.1016/j.physe.2021.114710.
     Google Scholar
  65. Ikot, A. N., Edet, C. O., Okorie, U. S., Abdel-Aty, A. H., Ramantswana, M., Rampho, G. J., Alshehri, N. A., Elagan, S. K.& Kaya, S. (2021). Solutions of the 2D Schrodinger equation and its thermal properties for Improved Ultra Generalized Exponential Hyperbolic potential (IUGE-HP). Eur. Phys. J. Plus 136(2021) 434. https://doi.org/10.1140/epjp/s13360-021-01408-w.
     Google Scholar
  66. Edet, C., Ikot, A., Okorie, U., Abdullah, H., & Salah, I. (2020). Eigenfunction, uncertainties and thermal properties of the Schrodinger equation with Screened modified Kratzer potential for diatomic molecules. Authorea Preprints. https ://doi.org/10.22541 /au.15909 8050.09308623.
     Google Scholar
  67. A. N. Ikot, U. S. Okorie, G. Osobonye, P. O. Amadi, C. O. Edet, M. J. Sithole, G.J. Rampho, R. Sever, Superstatistics of Schrödinger equation with pseudo-harmonic potential in external magnetic and Aharanov-Bohm fields, Heliyon 6 (2020) e03738, https://doi.org/10.1016/j.heliyon.2020.e03738.
     Google Scholar
  68. A. N. Ikot, U. S. Okorie, G. J. Rampho, P. O. Amadi, C. O. Edet, I. O. Akpan, H. Y. Abdullah & R. Horchani, Klein–Gordon Equation and Nonrelativistic Thermodynamic Properties with Improved Screened Kratzer Potential. Journal of Low Temperature Physics, 1-21. (2021) https://doi.org/10.1007/s10909-020-02544-w.
     Google Scholar
  69. U S Okorie, C O Edet, A N Ikot, G J Rampho and R Sever, Thermodynamic functions for diatomic molecules with modified Kratzer plus screened Coulomb potential, Indian J Phys (2020). https://doi.org/10.1007/s12648-019-01670-w.
     Google Scholar
  70. C. O. Edet, P. O. Amadi, M. C. Onyeaju, U. S. Okorie, R. Sever, G. J. Rampho, Hewa Y. Abdullah, Idris H. Salih and A. N. Ikot, Thermal Properties and Magnetic Susceptibility of Hellmann Potential in Aharonov–Bohm (AB) Flux and Magnetic Fields at Zero and Finite Temperatures. Journal of Low Temperature Physics (2020). https://doi.org/10.1007/s10909-020-02533-z.
     Google Scholar
  71. G. J. Rampho, A. N. Ikot, C. O. Edet & U. S. Okorie, Energy spectra and thermal properties of diatomic molecules in the presence of magnetic and AB fields with improved Kratzer potential, Mol. Phys, (2020) https://doi.org/10.1080/00268976.2020.1821922.
     Google Scholar
  72. A. N. Ikot, C. O. Edet, P. O. Amadi, U. S. Okorie, G. J. Rampho, and H. Y. Abdullah, Thermodynamic properties of Aharanov-Bohm (AB) and magnetic fields with screened Kratzer potential, Eur. Phys. J. D 74 (2020) 159, https://doi.org/10.1140/epjd/e2020-10084-9.
     Google Scholar