Cosmic Background
Article Main Content
A possibility is that in cosmic background, primordial photon lattice where emerges a way to mass conservation, a photon was disturbed to create a spin then lead to its neighbors consecutively avalanching -- CMB -- into this a small ripple, which inverse spin directions pointing to a world was made of matter or antimatter whichever is parity violation; now cosmos was like an expanding hole -- an isotropic gravity field -- in photon lattice that influenced on everything, so inertia will be partly clarified.
References
-
Penzias A & Wilson R (1965). A Measurement of Excess Antenna Temperature at 4080 Mc/s. The Astrophysical Journal 142, 419-421.
Google Scholar
1
-
Lemaître G (1931). The Beginning of the World from the Point of View of Quantum Theory. Nature127 (3210): 706.
Google Scholar
2
-
Bondi H & Gold T (1948). The Steady-State Theory of the Expanding Universe, MNRAS108252–270.
Google Scholar
3
-
Castelvecchi D (2020). Hints of twisted light offer clues to dark energy’s nature. Nature 588, 21.
Google Scholar
4
-
Narlikar J & Wickramasinghe N (1967). Microwave Background in a Steady State Universe. Nature216 (5110): 43–44.
Google Scholar
5
-
Lee T & Yang C (1956). Question of Parity Conservation in Weak Interactions. Phys. Rev. 104 (1): 254–258.
Google Scholar
6
-
Galileo G (1632). Dialogue Concerning the Two Chief World Systems
Google Scholar
7
-
Long A & Sedley D (1987). Epicureanism: The principals of conservation. Cambridge University Press. pp. 25–26.
Google Scholar
8
-
Lee C et al (2021). Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature 589, 230–235.
Google Scholar
9
-
de Bernardis P et al (2000). A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature 404 (6781): 955–959.
Google Scholar
10
-
Madison K et al (2000). Vortex Formation in a Stirred Bose-Einstein Condensate. Phys. Rev. Lett. 84, 806.
Google Scholar
11
-
Zwierlein M et al (2005). Vortices and superfluidity in a strongly interacting Fermi gas. Nature 435, 1047–1051.
Google Scholar
12
-
Minami Y & Komatsu E (2020). New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data. Phys. Rev. Lett. 125, 221301.
Google Scholar
13
-
Kogut A et al (1993). Dipole Anisotropy in the COBE Differential Microwave Radiometers First-Year Sky Maps. Astrophysical Journal419: 1–6.
Google Scholar
14
-
Aghanim N et al (2013). Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppursimuove. A&A 571 (27): A27.
Google Scholar
15
-
Nemiroff R (2009). CMBR Dipole: Speeding Through the Universe. NASA 090906.
Google Scholar
16
-
Ade P et al (2015). Planck 2015 results. XIII. Cosmological parameters. A&A 594: A13.
Google Scholar
17
-
Kohli I & Michael C (2016). Mathematical issues in eternal inflation. arXiv1408.2249.
Google Scholar
18
-
Hubble E (1929). A relation between distance and radial velocity among extra-galactic nebulae, PNAS 15 (3) 168-173.
Google Scholar
19
-
Adam G et al (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astronomical Journal 116(3): 1009–38.
Google Scholar
20
-
Agakishiev H et al (2011). Observation of the antimatter helium-4 nucleus. Nature 473 (7347): 353–356.
Google Scholar
21
-
Anderson C (1932). The Apparent Existence of Easily Deflectable Positives. Science 76 (1967): 238–9.
Google Scholar
22
-
Abe K et al (2012). Search for Antihelium with the BESS-Polar Spectrometer. Phys. Rev. Lett. 108 (13): 131301.
Google Scholar
23
-
Wu C et al (1957). Experimental Test of Parity Conservation in Beta Decay. Phys. Rev. 105:1413–1415.
Google Scholar
24
-
Aail R et al (2014). "Measurement of CP asymmetry in D0→K+K− and D0→π+π− decays". JHEP 7: 41.
Google Scholar
25
-
Alpher R, Bethe H & Gamow G (1948). The Origin of Chemical Elements. Phys. Rev. 73 (7): 803–804.
Google Scholar
26
-
Burbidge E, Burbidge G, Fowler W & Hoyle F (1957). Synthesis of the Elements in Stars. Rev. Mod. Phys. 29 (4): 547–650.
Google Scholar
27
-
Mao J (2017). The Periodic Table Possible Coincided with an Unfolded Shape of Atomic Nuclei. Applied Physics Research 9 (6):47.
Google Scholar
28
-
Newton I (1687). Philosophiae Naturalis Principia Mathematica, Roy. Soc.
Google Scholar
29
-
Einstein A (1916). Grundlage der allge meinen Relativitats theorie. Ann. Phys., Lpz. (4) 49, 769-822.
Google Scholar
30
-
Hermann B & Joseph S (1996). The Lense–Thirring Effect and Mach's Principle. Physics Letters A 228 (3): 121.
Google Scholar
31
-
Julian B & Herbert P (1995). Mach's principle: from Newton's bucket to quantum gravity. Boston: Birkhäuser. p. 106.
Google Scholar
32
-
John L (1785). "Of the Rotatory Motion of a Body of any Form whatever" Philosophical Transactions. Royal Society, London. LXXV (I): 311–332.
Google Scholar
33
-
Mach E (1883). The Science of Mechanics. Brockhaus, Leipzig.
Google Scholar
34
-
Eric G et al (1990). Testing the equivalence principle in the field of the Earth: Particle physics at masses below 1μeV? Phys. Rev. D 42: 3267–3292.
Google Scholar
35
-
Has I, Miclaus S & Has A (2021). Explaining the Nature of the Mass m of Submicroparticles and the Phenomenon of Mass Variation with Velocity V in Ether. EJ-PHYSICS2021.3.1.48.
Google Scholar
36
-
van der Waals (1873). Over de Continuiteit van den Gas- en Vloeistoftoestand. PhD thesis, Leiden, The Netherlands.
Google Scholar
37
-
Fermi E (1934). VersucheinerTheorie der β-Strahlen. I. ZeitschriftfürPhysik A. 88 (3–4): 161–177.
Google Scholar
38
-
Tang K et al (2013). Observational evidences for the speed of the gravity based on the Earth tide. Chinese Science Bulletin 58 (4-5): 474-77.
Google Scholar
39
-
Grahn P, Annila A &Kolehmainen E (2018). On the carrier of inertia. AIP Advances 8, 035028.
Google Scholar
40
-
Faraday M (1850). On the Possible Relation of Gravity to Electricity. Abstracts of the Papers Communicated to the Royal Society of London 5: 994–995.
Google Scholar
41
Similar Articles
- Rajendra S. Prajapati, Origin of Gravity and Reason for General Theory of Relativity Passing All the Tests , European Journal of Applied Physics: Vol. 7 No. 2 (2025)
- Jiří Stávek, The Newton-Stefan-Boltzmann-Planck Code. The Solar Microwave Background Formation on the Blackbody Sphere at the Distance R = 140 AU , European Journal of Applied Physics: Vol. 6 No. 2 (2024)
- Alex Ioskevich, Time Tacking: Practical Approach to Interstellar Travel , European Journal of Applied Physics: Vol. 7 No. 1 (2025)
- Jirí Stávek, The Rutherford-Harkins-Landau-Chadwick Key–III. Fission Interpreted by Nuclear Chemistry , European Journal of Applied Physics: Vol. 7 No. 1 (2025)
- Alex Ioskevich, Quantum Propulsion: Background and Practical Applications , European Journal of Applied Physics: Vol. 6 No. 2 (2024)
- Bharat Khushalani, New Energy Sources for Space Propulsion: Pioneering Beyond Chemical Limits , European Journal of Applied Physics: Vol. 7 No. 4 (2025)
- Sheillah Nekesa Wekesa, Dismas Simiyu Wamalwa, Estimating Gravitational Redshift in Galaxy Clusters and Voids Using Hernquist and Tophat Density Profiles , European Journal of Applied Physics: Vol. 7 No. 1 (2025)
- Kazuyasu Shigemoto, Comments on the Black Hole War , European Journal of Applied Physics: Vol. 6 No. 2 (2024)
- Abdürrezzak Emin Bozdoğan, Length Contraction, Time Dilation, Mass, Momentum and Energy Equations, Particle and Antiparticle Potential Energy, Pair Production and Annihilation Energy Equations from Harmonic Oscillator Rest Energy Equation and New Relations from Uncertainty Principle , European Journal of Applied Physics: Vol. 7 No. 1 (2025)
- Wellingtone Kibande, Joseph Akeyo Omolo, Dismas Wamalwa Simiyu, Gravitation in Flat Euclidean Spacetime Frame: Unified Electrogravity and Magnetogravity Forces , European Journal of Applied Physics: Vol. 6 No. 4 (2024)
1-10 of 66
Next
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
-
Jianping Mao,
Photon Structure and Behavior , European Journal of Applied Physics: Vol. 3 No. 5 (2021)





