##plugins.themes.bootstrap3.article.main##

One of possibilities for that why like charges repel and opposite charges attract was a photon possessing negative and positive two poles that with an up or down spin frequency – any integer – offers a fresh insight into photon energies.

References

  1. R. Hooke, Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon... London: Royal Society of London. 1667. ISBN 978-0-486-49564-4.
     Google Scholar
  2. I. Newton, [1730]. Opticks (4th ed). Dover, NY: Dover Publications. Book II, Part III, Propositions XII–XX, Queries 25–29. 1952. ISBN 978-0-486-60205-9.
     Google Scholar
  3. M. Planck, “Ueber das Gesetz der Energieverteilung im Normalspectrum (On the Law of Distribution of Energy in the Normal Spectrum),” Annalen der Physik, vol.4 (3), p. 553, 1901.
     Google Scholar
  4. A. Einstein,“Über einen die Erzeugungund Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, ”Annalen der Physik,vol. 17 (6), pp. 132–148, 1905.
     Google Scholar
  5. R. Millikan, “A Direct Determination of "h”,” Phys. Rev., vol.4 (1), pp. 73–75, 1914.
     Google Scholar
  6. G. N. Lewis, “The conservation of photons,” Nature, vol. 118, pp. 874-875, 1926.
     Google Scholar
  7. A. H. Compton, “A Quantum Theory of the Scattering of X-Rays by Light Elements.” Phys. Rev., vol.21 (5), pp. 483–502, 1923.
     Google Scholar
  8. D. Peter, The Philosopher's Tree: A Selection of Michael Faraday's Writings. CRC Press. ISBN 0-7503-0570-3. p. 125, 1999.
     Google Scholar
  9. J. Schwinger, “A Magnetic Model of Matter,” Science, vol. 165 (3895), pp. 757–761, 1969.
     Google Scholar
  10. E. Witten, “Dyons of Charge eθ/2π,” Phys. Lett. B., vol. 86 (3–4), pp. 283–287, 1979.
     Google Scholar
  11. T. Skyrme, “A unified field theory of mesons and baryons,” Nuclear Physics, vol.31,pp. 556–569, 1962.
     Google Scholar
  12. A. Usama, S. Henk, “Skyrmions in a ferromagnetic Bose–Einstein condensate,” Nature, vol.411 (6840), pp. 918–20, 2001.
     Google Scholar
  13. M. Zeeya, “Collaborative physics: string theory finds a bench mate,” Nature, vol.478 (7369), pp. 302–304, 2011.
     Google Scholar
  14. R. Lisa, S. Raman, “An alternative to compactification,” Phys. Rev. Lett., vol.83 (23), pp. 4690–4693, 1999.
     Google Scholar
  15. S. Ashoke, “Strong-weak coupling duality in four-dimensional string theory,” International Journal of Modern Physics A., vol. 9 (21), pp. 3707–3750, 1994.
     Google Scholar
  16. H. Chris, T. Paul, “Unity of superstring dualities,” Nuclear Physics B., vol. 4381 (1), pp. 109–137, 1995.
     Google Scholar
  17. K. L. Rajpal, A Photon is a Magnetic Dipole, viXra 2105.0017, 2021.
     Google Scholar
  18. M. W. Evans, “The Elementary Static Magnetic Field of the Photon,” Physica B, vol. 182, pp. 227-236, 1992.
     Google Scholar
  19. J. Mao, “The Periodic Table Possible Coincided with an Unfolded Shape of Atomic Nuclei, ”Applied Physics Research, vol. 9 (6), p. 47, 2017.
     Google Scholar
  20. A. Oknin´ski, On spin-charge separation, viXra 2107.0178, 2021.
     Google Scholar
  21. P Czajka, T. Gao, M. Hirschberger, P. Lampen-Kelley, A. Banerjee, J. Yan, D. G. Mandrus, S. E. Nagler, N. P. Ong, “Oscillations of the thermal conductivity in the spin-liquid state of α-RuCl3,” Nature Physics, vol.17, pp. 915–919, 2021.
     Google Scholar
  22. Y. Jompol, C. J. B. Ford, J. P. Griffiths, I. Farrer, G. A. C. Jones, D. Anderson, D. A. Ritchie, T. W. Silk, A. J. Schofield, “Probing Spin-Charge Separation in a Tomonaga-Luttinger Liqui,” Science, vol. 325 (5940), pp. 597–601, 2009.
     Google Scholar
  23. J. Mao, “Cosmic Background,” European Journal of Applied Physics, vol. 3(1), pp. 67-70, 2021.
     Google Scholar
  24. M. D. Schwartz, Quantum Field Theory and the Standard Model. Cambridge University Press. p. 66. ISBN 978-1-107-03473-0, 2014.
     Google Scholar
  25. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein Condensation in a Dilute Atomic Vapor,” Science, vol. 269 (5221), pp. 198–201, 1995.
     Google Scholar
  26. S. W. Hawkin, “Gravitationally collapsed objects of very low mass,” Monthly Notices of the Royal Astronomical Society, vol. 152, pp. 75, 1971.
     Google Scholar
  27. H. J. Treder, “The planckions as largest elementary particles and as smallest test bodies,” Foundations of Physics. Springer, vol.15 (2), pp. 161–166, 1985.
     Google Scholar
  28. R. C. Claes, “Using the Uncharged Kerr Black Hole as a Gravitational Mirror,” General Relativity and Gravitation, vol.29 (4), pp. 445–454, 1997.
     Google Scholar
  29. J. Eichler, “Electron–positron pair production in relativistic ion–atom collisions,” Phys. Lett. A., vol. 347 (1–3), pp. 67–72, 2005.
     Google Scholar
  30. J. H. Hubbell, “Electron positron pair production by photons: A historical overview,” Radiation Physics and Chemistry, vol. 75 (6), pp. 614–623, 2006.
     Google Scholar
  31. G. A. Miller, “Charge Densities of the Neutron and Proton,” Phys. Rev. Lett., vol. 99 (11), pp. 112001, 2007.
     Google Scholar
  32. P. A. M. Dirac, “A New Basis for Cosmology,” Proceedings of the Royal Society A., vol. 165 (921), pp.199–208, 1938.
     Google Scholar
  33. T. Teller, “On the change of physical constants,” Phys. Rev., vol.73 (7), pp. 801–802, 1948.
     Google Scholar
  34. D. Michael, “Trialogue on the number of fundamental constants,” Journal of High Energy Physics, 2002 (3): 023.
     Google Scholar
  35. J. P. Uzan, “The fundamental constants and their variation, Observational status and theoretical motivations,” Reviews of Modern Physics, vol.75 (2), pp. 403, 2003.
     Google Scholar
  36. P. A. M. Dirac, “Discussion of the infinite distribution of electrons in the theory of the positron,” Cambridge Phil. Soc., vol. 30 (2), pp. 150–163,1934.
     Google Scholar
  37. I. Levine et al., “Measurement of the Electromagnetic Coupling at Large Momentum Transfer,” Phys. Rev. Lett., vol.78 (3), pp. 424–427, 1997.
     Google Scholar
  38. H. Dehmelt, “A Single Atomic Particle Forever Floating at Rest in Free Space: New Value for Electron Radius,” Physica Scripta,T22, pp. 102–110,1988.
     Google Scholar
  39. V. Vaguine, Toward Viable Electron Model based on Classical Electrodynamics, viXra 2109.0135,2021.
     Google Scholar
  40. C. Amsler et al. “Review of Particle Physics: Gauge and Higgs bosons,” Phys. Lett. B., vol.667 (1), pp. 1, 2008.
     Google Scholar
  41. V. V. Kobychev, S. B. Popov, “Constraints on the photon charge from observations of extragalactic sources,” Astronomy Letters, vol.31 (3), pp. 147–151, 2005.
     Google Scholar
  42. E. Williams, J. Faller, H. Hill, “New Experimental Test of Coulomb's Law: A Laboratory Upper Limit on the Photon Rest Mass,” Phys. Rev. Lett., vol.26 (12), pp. 721, 1971.
     Google Scholar
  43. J. J. Thomson, “Cathode Rays,” Philosophical Magazine, vol. 44, p. 293, 1897.
     Google Scholar
  44. B. P. Abbott et al., “GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2,” Phys. Rev. Lett., vol. 118 (22), p. 221101, 2017.
     Google Scholar
  45. L. N. Cooper, “Bound electron pairs in a degenerate Fermi gas,” Phys. Rev., vol.104 (4), pp. 1189–1190, 1956.
     Google Scholar


Most read articles by the same author(s)