Photon Structure and Behavior
##plugins.themes.bootstrap3.article.main##
One of possibilities for that why like charges repel and opposite charges attract was a photon possessing negative and positive two poles that with an up or down spin frequency – any integer – offers a fresh insight into photon energies.
References
-
R. Hooke, Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon... London: Royal Society of London. 1667. ISBN 978-0-486-49564-4.
Google Scholar
1
-
I. Newton, [1730]. Opticks (4th ed). Dover, NY: Dover Publications. Book II, Part III, Propositions XII–XX, Queries 25–29. 1952. ISBN 978-0-486-60205-9.
Google Scholar
2
-
M. Planck, “Ueber das Gesetz der Energieverteilung im Normalspectrum (On the Law of Distribution of Energy in the Normal Spectrum),” Annalen der Physik, vol.4 (3), p. 553, 1901.
Google Scholar
3
-
A. Einstein,“Über einen die Erzeugungund Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, ”Annalen der Physik,vol. 17 (6), pp. 132–148, 1905.
Google Scholar
4
-
R. Millikan, “A Direct Determination of "h”,” Phys. Rev., vol.4 (1), pp. 73–75, 1914.
Google Scholar
5
-
G. N. Lewis, “The conservation of photons,” Nature, vol. 118, pp. 874-875, 1926.
Google Scholar
6
-
A. H. Compton, “A Quantum Theory of the Scattering of X-Rays by Light Elements.” Phys. Rev., vol.21 (5), pp. 483–502, 1923.
Google Scholar
7
-
D. Peter, The Philosopher's Tree: A Selection of Michael Faraday's Writings. CRC Press. ISBN 0-7503-0570-3. p. 125, 1999.
Google Scholar
8
-
J. Schwinger, “A Magnetic Model of Matter,” Science, vol. 165 (3895), pp. 757–761, 1969.
Google Scholar
9
-
E. Witten, “Dyons of Charge eθ/2π,” Phys. Lett. B., vol. 86 (3–4), pp. 283–287, 1979.
Google Scholar
10
-
T. Skyrme, “A unified field theory of mesons and baryons,” Nuclear Physics, vol.31,pp. 556–569, 1962.
Google Scholar
11
-
A. Usama, S. Henk, “Skyrmions in a ferromagnetic Bose–Einstein condensate,” Nature, vol.411 (6840), pp. 918–20, 2001.
Google Scholar
12
-
M. Zeeya, “Collaborative physics: string theory finds a bench mate,” Nature, vol.478 (7369), pp. 302–304, 2011.
Google Scholar
13
-
R. Lisa, S. Raman, “An alternative to compactification,” Phys. Rev. Lett., vol.83 (23), pp. 4690–4693, 1999.
Google Scholar
14
-
S. Ashoke, “Strong-weak coupling duality in four-dimensional string theory,” International Journal of Modern Physics A., vol. 9 (21), pp. 3707–3750, 1994.
Google Scholar
15
-
H. Chris, T. Paul, “Unity of superstring dualities,” Nuclear Physics B., vol. 4381 (1), pp. 109–137, 1995.
Google Scholar
16
-
K. L. Rajpal, A Photon is a Magnetic Dipole, viXra 2105.0017, 2021.
Google Scholar
17
-
M. W. Evans, “The Elementary Static Magnetic Field of the Photon,” Physica B, vol. 182, pp. 227-236, 1992.
Google Scholar
18
-
J. Mao, “The Periodic Table Possible Coincided with an Unfolded Shape of Atomic Nuclei, ”Applied Physics Research, vol. 9 (6), p. 47, 2017.
Google Scholar
19
-
A. Oknin´ski, On spin-charge separation, viXra 2107.0178, 2021.
Google Scholar
20
-
P Czajka, T. Gao, M. Hirschberger, P. Lampen-Kelley, A. Banerjee, J. Yan, D. G. Mandrus, S. E. Nagler, N. P. Ong, “Oscillations of the thermal conductivity in the spin-liquid state of α-RuCl3,” Nature Physics, vol.17, pp. 915–919, 2021.
Google Scholar
21
-
Y. Jompol, C. J. B. Ford, J. P. Griffiths, I. Farrer, G. A. C. Jones, D. Anderson, D. A. Ritchie, T. W. Silk, A. J. Schofield, “Probing Spin-Charge Separation in a Tomonaga-Luttinger Liqui,” Science, vol. 325 (5940), pp. 597–601, 2009.
Google Scholar
22
-
J. Mao, “Cosmic Background,” European Journal of Applied Physics, vol. 3(1), pp. 67-70, 2021.
Google Scholar
23
-
M. D. Schwartz, Quantum Field Theory and the Standard Model. Cambridge University Press. p. 66. ISBN 978-1-107-03473-0, 2014.
Google Scholar
24
-
M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein Condensation in a Dilute Atomic Vapor,” Science, vol. 269 (5221), pp. 198–201, 1995.
Google Scholar
25
-
S. W. Hawkin, “Gravitationally collapsed objects of very low mass,” Monthly Notices of the Royal Astronomical Society, vol. 152, pp. 75, 1971.
Google Scholar
26
-
H. J. Treder, “The planckions as largest elementary particles and as smallest test bodies,” Foundations of Physics. Springer, vol.15 (2), pp. 161–166, 1985.
Google Scholar
27
-
R. C. Claes, “Using the Uncharged Kerr Black Hole as a Gravitational Mirror,” General Relativity and Gravitation, vol.29 (4), pp. 445–454, 1997.
Google Scholar
28
-
J. Eichler, “Electron–positron pair production in relativistic ion–atom collisions,” Phys. Lett. A., vol. 347 (1–3), pp. 67–72, 2005.
Google Scholar
29
-
J. H. Hubbell, “Electron positron pair production by photons: A historical overview,” Radiation Physics and Chemistry, vol. 75 (6), pp. 614–623, 2006.
Google Scholar
30
-
G. A. Miller, “Charge Densities of the Neutron and Proton,” Phys. Rev. Lett., vol. 99 (11), pp. 112001, 2007.
Google Scholar
31
-
P. A. M. Dirac, “A New Basis for Cosmology,” Proceedings of the Royal Society A., vol. 165 (921), pp.199–208, 1938.
Google Scholar
32
-
T. Teller, “On the change of physical constants,” Phys. Rev., vol.73 (7), pp. 801–802, 1948.
Google Scholar
33
-
D. Michael, “Trialogue on the number of fundamental constants,” Journal of High Energy Physics, 2002 (3): 023.
Google Scholar
34
-
J. P. Uzan, “The fundamental constants and their variation, Observational status and theoretical motivations,” Reviews of Modern Physics, vol.75 (2), pp. 403, 2003.
Google Scholar
35
-
P. A. M. Dirac, “Discussion of the infinite distribution of electrons in the theory of the positron,” Cambridge Phil. Soc., vol. 30 (2), pp. 150–163,1934.
Google Scholar
36
-
I. Levine et al., “Measurement of the Electromagnetic Coupling at Large Momentum Transfer,” Phys. Rev. Lett., vol.78 (3), pp. 424–427, 1997.
Google Scholar
37
-
H. Dehmelt, “A Single Atomic Particle Forever Floating at Rest in Free Space: New Value for Electron Radius,” Physica Scripta,T22, pp. 102–110,1988.
Google Scholar
38
-
V. Vaguine, Toward Viable Electron Model based on Classical Electrodynamics, viXra 2109.0135,2021.
Google Scholar
39
-
C. Amsler et al. “Review of Particle Physics: Gauge and Higgs bosons,” Phys. Lett. B., vol.667 (1), pp. 1, 2008.
Google Scholar
40
-
V. V. Kobychev, S. B. Popov, “Constraints on the photon charge from observations of extragalactic sources,” Astronomy Letters, vol.31 (3), pp. 147–151, 2005.
Google Scholar
41
-
E. Williams, J. Faller, H. Hill, “New Experimental Test of Coulomb's Law: A Laboratory Upper Limit on the Photon Rest Mass,” Phys. Rev. Lett., vol.26 (12), pp. 721, 1971.
Google Scholar
42
-
J. J. Thomson, “Cathode Rays,” Philosophical Magazine, vol. 44, p. 293, 1897.
Google Scholar
43
-
B. P. Abbott et al., “GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2,” Phys. Rev. Lett., vol. 118 (22), p. 221101, 2017.
Google Scholar
44
-
L. N. Cooper, “Bound electron pairs in a degenerate Fermi gas,” Phys. Rev., vol.104 (4), pp. 1189–1190, 1956.
Google Scholar
45