New Experiment Demonstrates Transformation of Visible Photons into Other Visible Photons with Different Energy and Momentum
Article Main Content
A new experiment demonstrates that although mixed red and green wavelength photons may be perceived by the human eye as yellow, actual yellow wavelength photons are also produced. The experiment is easily repeatable and provides a basis for additional experimentation. The results raise a question as to the accuracy of element percentage predictions based on the intensity of spectrum lines. Other experiments with results supporting the transformation of photons with a given wavelength to photons with a different wavelength, such as the Compton Effect, are discussed. Also, Markarian 501 along with other Gamma-Ray Burst (GRB) data are shown to perhaps be the first evidence that photons, like other particles, do not all travel at the same speed in a vacuum. If true, then photons can be treated as other quantum objects whose wavelengths are associated with both rest mass and speed. This possibility provided the motivation to conduct the new experiment.
References
-
Albert J, Aliu E, Anderhub H, Antoranz P, Armada A, Baixeras C, Barrio JA, et al.. Variable very high energy γ–Ray emission from Markarian 501, Astrophys. J. 2007; 669: 862-883.
Google Scholar
1
-
Clark S. Warning light, New Scientist. 2014 Jan 4; :31.
Google Scholar
2
-
Yi T, Liang E, Qin Y, Lu R. On the spectral lags of the short gamma-ray bursts, MNRAS. 2006; 367(4): 1751-1756.
Google Scholar
3
-
Bernardi MG, Ghirlands G, Compana S, Covino S, Salvaterra R, Atteia JL, Burlon D, et al. Comparing the spectral lag of short and long gamma-ray bursts and its relation with the luminosity, MNRAS. 2015; 446: 1129-1138.
Google Scholar
4
-
Amelino-Camelia G, Fiore F, Guetta D, Puccetti S. Quantum-spacetime scenarios and soft spectral lags of the remarkable GRB130427A, arXiv:1305.2626v2, May, 1-17, 2013.
Google Scholar
5
-
Chakrabarti A, Chaudhury K, Sarkar SK, Bhadra A. Spectral evolution of GRB’s with negative spectral lag using Fermi GBM, Journal of High Energy Astrophysics. 2018; 18: 15-20.
Google Scholar
6
-
Wertz JR. Spacecraft Attitude Determination and Control. Boston U.S.A.: D. Reidel Publishing Company, 1984, p. 827.
Google Scholar
7
-
Weidner RT, Sells RL. Elementary Modern Physics. Boston: Allyn and Bacon, Inc, 1963, pp. 103, 106, 131.
Google Scholar
8
-
Jacobson J, Bjork G, Chuang I, Yamamoto Y. Photonic de Broglei’ waves, Phys. Rev. Lett. 1995; 74(24): 4835-4838.
Google Scholar
9
-
Arndt M, Nairz O, Vos-Andreae J, Keller C, van der Zouw G, Zeilinger A. Wave-particle duality of C60 molecules, Nature. 1999; 401: 680-682.
Google Scholar
10
-
Emile O, Emile J. Energy, linear momentum, and angular momentum of light: what do we measure?, Ann. Phys. 2018; 530: 1800111-1800124.
Google Scholar
11
-
Fang B, Menotti M, Liscidini M, Sipe JE, Lorenz VO. Three-photon discrete-energy-entangled W state in optical fiber, arXiv:1909.13000v1, Sep, 1-6, 2019.
Google Scholar
12
-
Wagner DR. Fresnel vs. Einstein – a new direct test, Applied Physics Research. 2015; 7 (3): 33-40.
Google Scholar
13
-
Hoek M. Détermination de la vitesse avec lacquelle est entrainée une onde lumineuse traversant un mileu en movement. Arch. Néerland., Sci. exactes naturelles. 1868; 3:180-185.
Google Scholar
14
Similar Articles
- Aleš Jančář, Zdeněk Matěj, Evžen Losa, Michal Košťál, Tomáš Czakoj, Michal Jelínek, Břetislav Mikel, Zdeněk Kopecký, Filip Mravec, Jan Král, The Effect of Decreasing Aperture Diameter on Signal Transmission from the Scintillator to the Photomultiplier Tube Over a Wide Energy Range , European Journal of Applied Physics: Vol. 6 No. 5 (2024)
- Jiří Stávek, The Descartes Code (Spin Orbital Rotation of Photons)–II. The Gravitational Redshift , European Journal of Applied Physics: Vol. 6 No. 1 (2024)
- Jiří Stávek, The Element of Physical Reality Hidden in the Letter of Malus to Lancret in 1800 can Solve the EPR Paradox (Malus Thermochromatic Loophole) , European Journal of Applied Physics: Vol. 5 No. 6 (2023)
- Jiří Stávek, The Descartes Code (Spin Orbital Rotation of Photons)–III. The Cosmological Redshift and the Hubble Constant , European Journal of Applied Physics: Vol. 6 No. 1 (2024)
- Farhad Vedad, Modeling Gravitational Lensing: Analyzing Light Deflection Through a Curved Atmospheric Layer , European Journal of Applied Physics: Vol. 7 No. 2 (2025)
- Jiří Stávek, The Descartes Code (Spin Orbital Rotation of Photons)–IV. The Harress-Sagnac Color Excess in the Rotation Curves of Galaxies , European Journal of Applied Physics: Vol. 6 No. 2 (2024)
- Reginald B. Little, Relativistic Chiral Inversion of Non-Zero Nuclear Magnetic Moments During Centrifugal Industrial Fermentative Processes , European Journal of Applied Physics: Vol. 5 No. 6 (2023)
- Bharat Khushalani, New Energy Sources for Space Propulsion: Pioneering Beyond Chemical Limits , European Journal of Applied Physics: Vol. 7 No. 4 (2025)
- Jiří Stávek, The Descartes Code (Spin Orbital Rotation of Photons)–I. The Fourth-Order Effects in the Michelson Interferometer , European Journal of Applied Physics: Vol. 5 No. 6 (2023)
- Farhad Vedad, Precision Modulation and the Shadow Blister Phenomenon in Optical Diffraction Using Straight-Edge Apertures , European Journal of Applied Physics: Vol. 6 No. 2 (2024)
You may also start an advanced similarity search for this article.