Lockheed Martin (retired), USA.
* Corresponding author

Article Main Content

A new experiment demonstrates that although mixed red and green wavelength photons may be perceived by the human eye as yellow, actual yellow wavelength photons are also produced. The experiment is easily repeatable and provides a basis for additional experimentation. The results raise a question as to the accuracy of element percentage predictions based on the intensity of spectrum lines. Other experiments with results supporting the transformation of photons with a given wavelength to photons with a different wavelength, such as the Compton Effect, are discussed. Also, Markarian 501 along with other Gamma-Ray Burst (GRB) data are shown to perhaps be the first evidence that photons, like other particles, do not all travel at the same speed in a vacuum. If true, then photons can be treated as other quantum objects whose wavelengths are associated with both rest mass and speed. This possibility provided the motivation to conduct the new experiment.

References

  1. Albert J, Aliu E, Anderhub H, Antoranz P, Armada A, Baixeras C, Barrio JA, et al.. Variable very high energy γ–Ray emission from Markarian 501, Astrophys. J. 2007; 669: 862-883.
     Google Scholar
  2. Clark S. Warning light, New Scientist. 2014 Jan 4; :31.
     Google Scholar
  3. Yi T, Liang E, Qin Y, Lu R. On the spectral lags of the short gamma-ray bursts, MNRAS. 2006; 367(4): 1751-1756.
     Google Scholar
  4. Bernardi MG, Ghirlands G, Compana S, Covino S, Salvaterra R, Atteia JL, Burlon D, et al. Comparing the spectral lag of short and long gamma-ray bursts and its relation with the luminosity, MNRAS. 2015; 446: 1129-1138.
     Google Scholar
  5. Amelino-Camelia G, Fiore F, Guetta D, Puccetti S. Quantum-spacetime scenarios and soft spectral lags of the remarkable GRB130427A, arXiv:1305.2626v2, May, 1-17, 2013.
     Google Scholar
  6. Chakrabarti A, Chaudhury K, Sarkar SK, Bhadra A. Spectral evolution of GRB’s with negative spectral lag using Fermi GBM, Journal of High Energy Astrophysics. 2018; 18: 15-20.
     Google Scholar
  7. Wertz JR. Spacecraft Attitude Determination and Control. Boston U.S.A.: D. Reidel Publishing Company, 1984, p. 827.
     Google Scholar
  8. Weidner RT, Sells RL. Elementary Modern Physics. Boston: Allyn and Bacon, Inc, 1963, pp. 103, 106, 131.
     Google Scholar
  9. Jacobson J, Bjork G, Chuang I, Yamamoto Y. Photonic de Broglei’ waves, Phys. Rev. Lett. 1995; 74(24): 4835-4838.
     Google Scholar
  10. Arndt M, Nairz O, Vos-Andreae J, Keller C, van der Zouw G, Zeilinger A. Wave-particle duality of C60 molecules, Nature. 1999; 401: 680-682.
     Google Scholar
  11. Emile O, Emile J. Energy, linear momentum, and angular momentum of light: what do we measure?, Ann. Phys. 2018; 530: 1800111-1800124.
     Google Scholar
  12. Fang B, Menotti M, Liscidini M, Sipe JE, Lorenz VO. Three-photon discrete-energy-entangled W state in optical fiber, arXiv:1909.13000v1, Sep, 1-6, 2019.
     Google Scholar
  13. Wagner DR. Fresnel vs. Einstein – a new direct test, Applied Physics Research. 2015; 7 (3): 33-40.
     Google Scholar
  14. Hoek M. Détermination de la vitesse avec lacquelle est entrainée une onde lumineuse traversant un mileu en movement. Arch. Néerland., Sci. exactes naturelles. 1868; 3:180-185.
     Google Scholar


Similar Articles

1-10 of 86

You may also start an advanced similarity search for this article.