Comments on the Aharonov-Bohm Effect
Article Main Content
In the original setting of the Aharonov-Bohm, the gauge invariant physical longitudinal mode of the vector potential, which is expressed by the gauge invariant physical current, gives the desired contribution to the Aharonov-Bohm effect. While the scalar mode of the vector potential, which changes under the gauge transformation so that it is the unphysical mode, give no contribution to the Aharonov-Bohm effect. Then Aharonov-Bohm effect really occurs by the physical longitudinal mode in the original Aharonov-Bohm’s setting. In the setting of Tonomura et al., where the magnet is shielded with the superconducting material, not only the magnetic field but also the longitudinal mode of the vector potential become massive by the Meissner effect. Then not only the magnetic field but also the physical longitudinal mode does not come out to the region where the electron travels. In such setting, only the scalar mode of the vector potential exists in the region where the electron travels, but there is no contribution to the Aharonov-Bohm effect from that mode.
References
-
Aharonov Y, Bohm D. Significance of Electromagnetic Potentials in the Quantum Theory. Phys. Rev., 1959; 115: 485-491.
Google Scholar
1
-
Aharonov A, and Bohm D.Further Considerations on Electromagnetic Potentials in the Quantum Theory. Phys. Rev., 1961, 123: 1511-1524.
Google Scholar
2
-
Aharonov Y, Bohm D.Remarks on the Possibility of Quantum Electrodynamics without Potentials. Phys. Rev., 1962; 125: 2192-2193.
Google Scholar
3
-
Chambers RG, Shift of an Electron Interference Pattern by Enclosed Magnetic Flux. Phys. Rev. Lett., 1960; 5: 3-5.
Google Scholar
4
-
Fowler HA, Marton L, Simpson JA, Suddeth JA. Electron Interferometer Studies of Iron Whiskers. J. Appl. Phys., 1961; 32: 1153-1155.
Google Scholar
5
-
M¨ollenstedt G, Bayh W. Messung der kontinuierlichen Phasenschiebung von Elektronenwellen im kraftfeldfreien Raum durch das magnetische vektorpotential einer Luftspule. Naturwissenschaften, 1962; 49: 81-82.
Google Scholar
6
-
Boersch H, Hamisch H, Grohmann K, Wohlleben D. Experimenteller Nachweis der Phasenschiebung von Elektronenwellen durch das magnetische Vektorpotential. Z. Phys., 1961; 165: 79-93.
Google Scholar
7
-
Bocchieri P, Loinger A. Nonexistence of the Aharonov-Bohm Effect. Nuovo Cimento, 1978; 47A: 475-482.
Google Scholar
8
-
Bocchieri P, Loinger A, Siragusa G. On the Aharonov-Bohm Effect. Nuovo Cimento. 1979; 51A: 1-17.
Google Scholar
9
-
Tonomura A, Osakabe N, Matsuda T, Kawasaki T, Endo J, Yano S, Yamada H. Evidence for Aharonov-Bohm Effect with Magnetic Field Completely Shielded from Electron Wave. Phys. Rev. Lett., 1986; 56: 792-795.
Google Scholar
10
-
Osakabe N, Matsuda T, Kawasaki T, Endo J, Tonomura A, Yano S, Yamada H. Experimental Confirmation of Aharonov-Bohm Effect using a Toroidal Magnetic Field Confined by a Superconductor.Phys. Rev., 1986; A34: 815-822.
Google Scholar
11
-
Ginzburg VL, Landau LD. On the Theory of Superconductivity. Zh. Eksp. Teor. Fiz., 1950; 20: 1064-1082.
Google Scholar
12
-
Abrikosov AA, Gor’kov LP.Contribution to the Theory of Superconducting Alloys with Paramagnetic Impurities. Sov. Phys. JETP, 1961; 12: 1243-1253.
Google Scholar
13
Similar Articles
- Ahlem Abidi, Entanglement of Coupled Harmonic Oscillators without and with Tunneling Effect and Correction Factor , European Journal of Applied Physics: Vol. 6 No. 5 (2024)
- Kazuyasu Shigemoto, Comments on the Black Hole War , European Journal of Applied Physics: Vol. 6 No. 2 (2024)
- Sheillah Nekesa Wekesa, Dismas Simiyu Wamalwa, Estimating Gravitational Redshift in Galaxy Clusters and Voids Using Hernquist and Tophat Density Profiles , European Journal of Applied Physics: Vol. 7 No. 1 (2025)
- Gianfranco Spavieri, Exploiting a Built-In Simultaneity: Perhaps, the Simplest Way to Show that the One-Way Speed of Light is Measurable in Principle , European Journal of Applied Physics: Vol. 6 No. 6 (2024)
- Aleš Jančář, Zdeněk Matěj, Evžen Losa, Michal Košťál, Tomáš Czakoj, Michal Jelínek, Břetislav Mikel, Zdeněk Kopecký, Filip Mravec, Jan Král, The Effect of Decreasing Aperture Diameter on Signal Transmission from the Scintillator to the Photomultiplier Tube Over a Wide Energy Range , European Journal of Applied Physics: Vol. 6 No. 5 (2024)
- Jiří Stávek, The Element of Physical Reality Hidden in the Letter of Malus to Lancret in 1800 can Solve the EPR Paradox (Malus Thermochromatic Loophole) , European Journal of Applied Physics: Vol. 5 No. 6 (2023)
- Bharat Khushalani, New Energy Sources for Space Propulsion: Pioneering Beyond Chemical Limits , European Journal of Applied Physics: Vol. 7 No. 4 (2025)
- Jiří Stávek, ChatGPT on the Sagnac Effect , European Journal of Applied Physics: Vol. 6 No. 2 (2024)
- Jiří Stávek, ChatGPT on the Einstein-Podolsky-Rosen Paradox , European Journal of Applied Physics: Vol. 5 No. 6 (2023)
- Jiří Stávek, The Descartes Code (Spin Orbital Rotation of Photons)–I. The Fourth-Order Effects in the Michelson Interferometer , European Journal of Applied Physics: Vol. 5 No. 6 (2023)
You may also start an advanced similarity search for this article.