Stability of Quantum Eigenstates and Collapse of Superposition of States in a Fluctuating Vacuum: The Madelung Hydrodynamic Approach
##plugins.themes.bootstrap3.article.main##
The paper investigates the quantum fluctuating dynamics by using the stochastic generalization of the Madelung quantum-hydrodynamic approach. By using the discrete approach, the path integral solution is derived in order to investigate how the final stationary configuration is obtained from the initial quantum superposition of states. The model shows that the quantum eigenstates remain stationary configurations with a very small perturbation of their mass density distribution and that any eigenstate, contributing to a quantum superposition of states, can be reached in the final stationary configuration. When the non-local quantum potential acquires a finite range of interaction, the work shows that the macroscopic coarse-grained description of the theory can lead to a really classical system. The minimum uncertainty attainable in the stochastic Madelung model is shown to be compatible with maximum speed of transmission of information and interactions. The theory shows that, in the quantum deterministic limit, the uncertainty relations of quantum mechanics are obtained. The connections with the decoherence theory and the Copenhagen interpretation of quantum mechanics are also discussed.
References
-
Young, T., Phil. Trans. R. Soc. Lond. 94, 1 (1804).
Google Scholar
1
-
Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777-780. http://dx.doi.org/10.1103/PhysRev.47.777
Google Scholar
2
-
Bell, J.S., On the Einstein- Podolsky-Rosen paradox, Physics, 1:195-200 (1964).
Google Scholar
3
-
Feynmann, R. P., The Feynman Lectures on Physics, Volume 3, (AddisonWesley, 1963).
Google Scholar
4
-
Auletta, G., Foundations and Interpretation of Quantum Mechanics, (World Scientific, 2001).
Google Scholar
5
-
Greenstein, G. .and Zajonc, A. G., The Quantum Challenge, (Jones and Bartlett Publishers, Boston, 2005), 2nd ed.
Google Scholar
6
-
Shadbolt, P., J. Mathews, C. F., Laing, A., and OBrien, J. L., Nature Physics 10, 278 (2014).
Google Scholar
7
-
Josson, C., Am. J. Phys, 42, 4 (1974).
Google Scholar
8
-
Zeilinger, A., Gahler, R., Shull, C.G., Treimer W., and Mampe, W., Rev. Mod. Phys. 60, 1067 (1988).
Google Scholar
9
-
Carnal, O., and Mlynek, J., Phys. Rev. Lett. 66, 2689 (1991).
Google Scholar
10
-
Schollkopf, W.and Toennies, J.P., Science 266, 1345 (1994).
Google Scholar
11
-
Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G. and Zeilinger, A., Nature 401, 680 (1999).
Google Scholar
12
-
O. Nairz, M. Arndt and A. Zeilinger, Am. J. Phys. 71, 319 (2003).
Google Scholar
13
-
Born, M., The statistical interpretation of quantum mechanics –
Google Scholar
14
-
Nobel Lecture, December 11, 1954.
Google Scholar
15
-
Ruggiero P. and Zannetti, M., Phys. Rev. Lett. 48, 963 (1982).
Google Scholar
16
-
Ghirardi, G.C., Collapse Theories, Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Fall 2018 Edition).
Google Scholar
17
-
Pitaevskii, P., Vortex lines in an Imperfect Bose Gas, Soviet Physics JETP. 1961;13(2):451–454.
Google Scholar
18
-
Everette, H., Rev. Mod. Phys. 29, 454 (1957).
Google Scholar
19
-
Vaidman, L., Many-Worlds Interpretation of Quantum Mechanics, Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Fall 2018 Edition).
Google Scholar
20
-
Bohm, D., Phys. Rev. 85, 166 (1952).
Google Scholar
21
-
Goldstein, S., Bohmian Mechanics, Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Summer 2017 Edition).
Google Scholar
22
-
Lombardi O., and Dieks, D., Modal Interpretations of Quantum Mechanics, Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Spring 2017 Edition).
Google Scholar
23
-
Laudisa, F., and Rovelli, C.. Relational Quantum Mechanics, Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Summer 2013 Edition).
Google Scholar
24
-
Griffiths, R.B., Consistent Quantum Theory, Cambridge University Press (2003).
Google Scholar
25
-
Cramer, J.G., Phys. Rev. D 22, 362 (1980).
Google Scholar
26
-
Cramer, J.G., The Quantum Handshake: Entanglement, Non-locality and Transaction, Springer Verlag (2016).
Google Scholar
27
-
Von Baeyer, H. C., QBism: The Future of Quantum Physics, Cambridge, Harvard University Press, (2016)
Google Scholar
28
-
Madelung, E.: Z. Phys. 40, 322-6 (1926).
Google Scholar
29
-
Bialyniki-Birula, I., Cieplak, M., Kaminski, J., “Theory of Quanta”, Oxford University press, Ny, (1992) 87-111.
Google Scholar
30
-
Weiner, J.H., Statistical Mechanics of Elasticity (John Wiley & Sons, New York, 1983), p. 315-7.
Google Scholar
31
-
Lidar, D. A.; Chuang, I. L.; Whaley, K. B. (1998). "Decoherence-Free Subspaces for Quantum Computation". Physical Review Letters. 81 (12): 2594–2597.
Google Scholar
32
-
Tsekov, R., Bohmian mechanics versus Madelung quantum hydrodynamics, arXiv:0904.0723v8 [quantum-phys] (2011).
Google Scholar
33
-
Gardner, C.L. (1994) The Quantum Hydrodynamic Model for Semiconductor Devices. SIAM Journal on Applied Mathematics, 54, 409-427. http://dx.doi.org/10.1137/S0036139992240425.
Google Scholar
34
-
Bousquet, D., Hughes, K.H., Micha, D.A. and Burghardt, I. (2001) Extended Hydrodynamic Approach to Quantum- Classical Nonequilibrium Evolution. I. Theory. The Journal of Chemical Physics, 134, 064116. http://dx.doi.org/10.1063/1.3553174.
Google Scholar
35
-
Chiarelli, P. (2013) Quantum to Classical Transition in the Stochastic Hydrodynamic Analogy: The Explanation of the Lindeman Relation and the Analogies between the Maximum of Density at Lambda Point and That at the Water-Ice Phase Transition. Physical Review & Research International, 3, 348-366.
Google Scholar
36
-
Chiarelli, S. and Chiarelli, P. Stability of quantum eigenstates and kinetics of wave function collapse in a fluctuating environment (2020) arXiv:2011.13997v1 [quant-ph].
Google Scholar
37
-
Chiarelli, P. (2013) Can Fluctuating Quantum States Acquire the Classical Behavior on Large Scale? Journal of Advanced Physics, 2, 139-163.
Google Scholar
38
-
W. Zurek and J.P. Paz, Decoherence, chaos and the second law, arXiv:gr-qc/9402006v2 3 Feb 1994.
Google Scholar
39
-
Mariano, A., Facchi, P. and Pascazio, S. (2001) Decoherence and Fluctuations in Quantum Interference Experiments. Fortschritte der Physik, 49, 1033-1039.
Google Scholar
40
-
Cerruti, N.R., Lakshminarayan, A., Lefebvre, T.H., Tomsovic, S.: Exploring phase space localization of chaotic eigenstates via parametric variation. Phys. Rev. E 63, 016208 (2000). http://dx.doi.org/10.1103/PhysRevE.63.016208.
Google Scholar
41
-
Wang, C., Bonifacio, P., Bingham, R., Mendonca, J., T., Detection of quantum decoherence due to spacetime fluctuations, 37th COSPAR Scientific Assembly. Held 13-20 July 2008, in Montréal, Canada., p. 3390.
Google Scholar
42
-
Chiarelli, S. and Chiarelli, P. (2020) Stochastic Quantum Hydrodynamic Model from the Dark Matter of Vacuum Fluctuations: The Langevin-Schrödinger Equation and the Large-Scale Classical Limit. Open Access Library Journal, 7, 1-36. doi: 10.4236/oalib.1106659.
Google Scholar
43
-
Nelson, E., Derivation of the Schrödinger Equation from Newtonian Mechanics, Phys. Rev. 150, 1079 (1966).
Google Scholar
44
-
Klinert, H., Pelster, A., Putz, M. V., Variational perturbation theory for Marcov processes, Phys. Rev. E 65, 066128 (2002).
Google Scholar
45
-
Gardiner, C.W., Handbook of Stochastic Method, 2 nd Edition, Springer, (1985) ISBN 3-540-61634.9, pp. 331-41.
Google Scholar
46
-
Rumer, Y.B. and Ryvkin, M.S. (1980) Thermodynamics, Statistical Physics, and Kinetics Mir Publishers, Moscow, 269.
Google Scholar
47
-
W. Zurek: Decoherence and the Transition from Quantum to Classical—Revisited (https://arxiv.org/pdf/quantph/0306072.pdf), Los Alamos Science Number 27 (2002).
Google Scholar
48
-
Bressanini D. “An accurate and compact wave function for the 4He dimer”, EPL 2011;96.
Google Scholar
49
-
Chiarelli, P., The Density Maximum of He4 at the Lambda Point Explained by the Quantum Hydrodynamic Analogy. American Journal of Physical Chemistry. Vol. 2, No. 6, 2013, pp. 122-131. doi: 10.11648/j.ajpc.20130206.12.
Google Scholar
50
-
Chiarelli, P., Minimum Black hole mass, Physical Science International Journal, 9(4): 1-25, 2016.
Google Scholar
51
-
Kowalski A. M., Plastino A., Decoherence, Anti-decoherence, and Fisher Information, Entropy, to be published. 2021.
Google Scholar
52
-
Venuti, L., C., The recurrence time in quantum mechanics arXiv:1509.04352v2 [quant-ph].
Google Scholar
53
-
Bassi A., et al. "Gravitational decoherence", Class. Quantum Grav. 34 193002, 2017.
Google Scholar
54
-
Pfister, C., Kaniewski, J., Tomamichel, M., et al. A universal test for gravitational decoherence. Nat Commun 7, 13022 (2016). https://doi.org/10.1038/ncomms13022.
Google Scholar
55