##plugins.themes.bootstrap3.article.main##

The paper investigates the quantum fluctuating dynamics by using the stochastic generalization of the Madelung quantum-hydrodynamic approach. By using the discrete approach, the path integral solution is derived in order to investigate how the final stationary configuration is obtained from the initial quantum superposition of states. The model shows that the quantum eigenstates remain stationary configurations with a very small perturbation of their mass density distribution and that any eigenstate, contributing to a quantum superposition of states, can be reached in the final stationary configuration. When the non-local quantum potential acquires a finite range of interaction, the work shows that the macroscopic coarse-grained description of the theory can lead to a really classical system. The minimum uncertainty attainable in the stochastic Madelung model is shown to be compatible with maximum speed of transmission of information and interactions. The theory shows that, in the quantum deterministic limit, the uncertainty relations of quantum mechanics are obtained. The connections with the decoherence theory and the Copenhagen interpretation of quantum mechanics are also discussed.

References

  1. Young, T., Phil. Trans. R. Soc. Lond. 94, 1 (1804).
     Google Scholar
  2. Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777-780. http://dx.doi.org/10.1103/PhysRev.47.777
     Google Scholar
  3. Bell, J.S., On the Einstein- Podolsky-Rosen paradox, Physics, 1:195-200 (1964).
     Google Scholar
  4. Feynmann, R. P., The Feynman Lectures on Physics, Volume 3, (AddisonWesley, 1963).
     Google Scholar
  5. Auletta, G., Foundations and Interpretation of Quantum Mechanics, (World Scientific, 2001).
     Google Scholar
  6. Greenstein, G. .and Zajonc, A. G., The Quantum Challenge, (Jones and Bartlett Publishers, Boston, 2005), 2nd ed.
     Google Scholar
  7. Shadbolt, P., J. Mathews, C. F., Laing, A., and OBrien, J. L., Nature Physics 10, 278 (2014).
     Google Scholar
  8. Josson, C., Am. J. Phys, 42, 4 (1974).
     Google Scholar
  9. Zeilinger, A., Gahler, R., Shull, C.G., Treimer W., and Mampe, W., Rev. Mod. Phys. 60, 1067 (1988).
     Google Scholar
  10. Carnal, O., and Mlynek, J., Phys. Rev. Lett. 66, 2689 (1991).
     Google Scholar
  11. Schollkopf, W.and Toennies, J.P., Science 266, 1345 (1994).
     Google Scholar
  12. Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G. and Zeilinger, A., Nature 401, 680 (1999).
     Google Scholar
  13. O. Nairz, M. Arndt and A. Zeilinger, Am. J. Phys. 71, 319 (2003).
     Google Scholar
  14. Born, M., The statistical interpretation of quantum mechanics –
     Google Scholar
  15. Nobel Lecture, December 11, 1954.
     Google Scholar
  16. Ruggiero P. and Zannetti, M., Phys. Rev. Lett. 48, 963 (1982).
     Google Scholar
  17. Ghirardi, G.C., Collapse Theories, Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Fall 2018 Edition).
     Google Scholar
  18. Pitaevskii, P., Vortex lines in an Imperfect Bose Gas, Soviet Physics JETP. 1961;13(2):451–454.
     Google Scholar
  19. Everette, H., Rev. Mod. Phys. 29, 454 (1957).
     Google Scholar
  20. Vaidman, L., Many-Worlds Interpretation of Quantum Mechanics, Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Fall 2018 Edition).
     Google Scholar
  21. Bohm, D., Phys. Rev. 85, 166 (1952).
     Google Scholar
  22. Goldstein, S., Bohmian Mechanics, Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Summer 2017 Edition).
     Google Scholar
  23. Lombardi O., and Dieks, D., Modal Interpretations of Quantum Mechanics, Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Spring 2017 Edition).
     Google Scholar
  24. Laudisa, F., and Rovelli, C.. Relational Quantum Mechanics, Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Summer 2013 Edition).
     Google Scholar
  25. Griffiths, R.B., Consistent Quantum Theory, Cambridge University Press (2003).
     Google Scholar
  26. Cramer, J.G., Phys. Rev. D 22, 362 (1980).
     Google Scholar
  27. Cramer, J.G., The Quantum Handshake: Entanglement, Non-locality and Transaction, Springer Verlag (2016).
     Google Scholar
  28. Von Baeyer, H. C., QBism: The Future of Quantum Physics, Cambridge, Harvard University Press, (2016)
     Google Scholar
  29. Madelung, E.: Z. Phys. 40, 322-6 (1926).
     Google Scholar
  30. Bialyniki-Birula, I., Cieplak, M., Kaminski, J., “Theory of Quanta”, Oxford University press, Ny, (1992) 87-111.
     Google Scholar
  31. Weiner, J.H., Statistical Mechanics of Elasticity (John Wiley & Sons, New York, 1983), p. 315-7.
     Google Scholar
  32. Lidar, D. A.; Chuang, I. L.; Whaley, K. B. (1998). "Decoherence-Free Subspaces for Quantum Computation". Physical Review Letters. 81 (12): 2594–2597.
     Google Scholar
  33. Tsekov, R., Bohmian mechanics versus Madelung quantum hydrodynamics, arXiv:0904.0723v8 [quantum-phys] (2011).
     Google Scholar
  34. Gardner, C.L. (1994) The Quantum Hydrodynamic Model for Semiconductor Devices. SIAM Journal on Applied Mathematics, 54, 409-427. http://dx.doi.org/10.1137/S0036139992240425.
     Google Scholar
  35. Bousquet, D., Hughes, K.H., Micha, D.A. and Burghardt, I. (2001) Extended Hydrodynamic Approach to Quantum- Classical Nonequilibrium Evolution. I. Theory. The Journal of Chemical Physics, 134, 064116. http://dx.doi.org/10.1063/1.3553174.
     Google Scholar
  36. Chiarelli, P. (2013) Quantum to Classical Transition in the Stochastic Hydrodynamic Analogy: The Explanation of the Lindeman Relation and the Analogies between the Maximum of Density at Lambda Point and That at the Water-Ice Phase Transition. Physical Review & Research International, 3, 348-366.
     Google Scholar
  37. Chiarelli, S. and Chiarelli, P. Stability of quantum eigenstates and kinetics of wave function collapse in a fluctuating environment (2020) arXiv:2011.13997v1 [quant-ph].
     Google Scholar
  38. Chiarelli, P. (2013) Can Fluctuating Quantum States Acquire the Classical Behavior on Large Scale? Journal of Advanced Physics, 2, 139-163.
     Google Scholar
  39. W. Zurek and J.P. Paz, Decoherence, chaos and the second law, arXiv:gr-qc/9402006v2 3 Feb 1994.
     Google Scholar
  40. Mariano, A., Facchi, P. and Pascazio, S. (2001) Decoherence and Fluctuations in Quantum Interference Experiments. Fortschritte der Physik, 49, 1033-1039.
     Google Scholar
  41. Cerruti, N.R., Lakshminarayan, A., Lefebvre, T.H., Tomsovic, S.: Exploring phase space localization of chaotic eigenstates via parametric variation. Phys. Rev. E 63, 016208 (2000). http://dx.doi.org/10.1103/PhysRevE.63.016208.
     Google Scholar
  42. Wang, C., Bonifacio, P., Bingham, R., Mendonca, J., T., Detection of quantum decoherence due to spacetime fluctuations, 37th COSPAR Scientific Assembly. Held 13-20 July 2008, in Montréal, Canada., p. 3390.
     Google Scholar
  43. Chiarelli, S. and Chiarelli, P. (2020) Stochastic Quantum Hydrodynamic Model from the Dark Matter of Vacuum Fluctuations: The Langevin-Schrödinger Equation and the Large-Scale Classical Limit. Open Access Library Journal, 7, 1-36. doi: 10.4236/oalib.1106659.
     Google Scholar
  44. Nelson, E., Derivation of the Schrödinger Equation from Newtonian Mechanics, Phys. Rev. 150, 1079 (1966).
     Google Scholar
  45. Klinert, H., Pelster, A., Putz, M. V., Variational perturbation theory for Marcov processes, Phys. Rev. E 65, 066128 (2002).
     Google Scholar
  46. Gardiner, C.W., Handbook of Stochastic Method, 2 nd Edition, Springer, (1985) ISBN 3-540-61634.9, pp. 331-41.
     Google Scholar
  47. Rumer, Y.B. and Ryvkin, M.S. (1980) Thermodynamics, Statistical Physics, and Kinetics Mir Publishers, Moscow, 269.
     Google Scholar
  48. W. Zurek: Decoherence and the Transition from Quantum to Classical—Revisited (https://arxiv.org/pdf/quantph/0306072.pdf), Los Alamos Science Number 27 (2002).
     Google Scholar
  49. Bressanini D. “An accurate and compact wave function for the 4He dimer”, EPL 2011;96.
     Google Scholar
  50. Chiarelli, P., The Density Maximum of He4 at the Lambda Point Explained by the Quantum Hydrodynamic Analogy. American Journal of Physical Chemistry. Vol. 2, No. 6, 2013, pp. 122-131. doi: 10.11648/j.ajpc.20130206.12.
     Google Scholar
  51. Chiarelli, P., Minimum Black hole mass, Physical Science International Journal, 9(4): 1-25, 2016.
     Google Scholar
  52. Kowalski A. M., Plastino A., Decoherence, Anti-decoherence, and Fisher Information, Entropy, to be published. 2021.
     Google Scholar
  53. Venuti, L., C., The recurrence time in quantum mechanics arXiv:1509.04352v2 [quant-ph].
     Google Scholar
  54. Bassi A., et al. "Gravitational decoherence", Class. Quantum Grav. 34 193002, 2017.
     Google Scholar
  55. Pfister, C., Kaniewski, J., Tomamichel, M., et al. A universal test for gravitational decoherence. Nat Commun 7, 13022 (2016). https://doi.org/10.1038/ncomms13022.
     Google Scholar