##plugins.themes.bootstrap3.article.main##

In the current paper we present a generalization of the transforms from the frame co-moving with an accelerated particle for uniformly accelerated motion into an inertial frame of reference. The motivation is that the real life applications include accelerating and rotating frames with arbitrary orientations more often than the idealized case of inertial frames; our daily experiments happen in Earth-bound laboratories. We use the transforms in order to generalize the Thomas-Wigner rotation to the case of uniformly accelerated boosts.

References

  1. Moller, C. “The Theory of Relativity”, Oxford Press (1960).
     Google Scholar
  2. Thomas, L. H. “Motion of the spinning electron”. Nature. 117 (1926).
     Google Scholar
  3. Ben-Menahem, A. “Wigner's rotation revisited”. Am. J. Phys. 53 (1985).
     Google Scholar
  4. Ben-Menahem, S. “The Thomas precession and velocity space curvature”. J. Math. Phys. 27 (1986).
     Google Scholar
  5. Kroemer, H. "The Thomas precession factor in spin-orbit interaction" Am J. Physics. 72 (2004).
     Google Scholar
  6. Rhodes, J. A.; Semon, M. D. “Relativistic velocity space, Wigner rotation and Thomas precession”. Am. J. Phys. 72, (2005).
     Google Scholar
  7. Malykin, G. B. "Thomas precession: correct and incorrect solutions". Phys. Usp. 49 (8): (2006).
     Google Scholar
  8. Krivoruchenko, M. I. “Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: Two faces of one coin” Phys. Usp.,52. 8 (2009).
     Google Scholar
  9. Sfarti, A. “Hyperbolic Motion Treatment for Bell’s Spaceship Experiment”, Fizika A, 18, 2 (2009).
     Google Scholar
  10. Sfarti, A. “Coordinate Time Hyperbolic Motion for Bell’s Spaceship Experiment”, Fizika A,19, 3 (2010).
     Google Scholar
  11. Sfarti, A. “Relativity solution for “Twin paradox”: a comprehensive solution”, IJP, 86,10 (2012).
     Google Scholar
  12. Rebilas, K. “Comment on Elementary analysis of the special relativistic combination of velocities, Wigner rotation and Thomas precession”. Eur. J. Phys., 34 (3), (2013).
     Google Scholar
  13. Nelson, R.A. “Generalized Lorentz transformation for an accelerated, rotating frame of reference”, J. Math. Phys., 28, (1987).
     Google Scholar
  14. http://paulbourke.net/geometry/rotate.
     Google Scholar
  15. Sfarti, A. “The General Trajectories of Accelerated Particles in Special Relativity”, JAPSI, 5, 4, (2016).
     Google Scholar
  16. Sfarti, A. “The trajectories of charged particles moving at relativistic speeds inside particle separators – a fully symbolic solution”, IJNEST, 4, 4, (2009).
     Google Scholar
  17. Sfarti, A. “Electrodynamics in Uniformly Accelerating Frames as Viewed from an Inertial Frame”, IJPOT, 8, 2, (2017).
     Google Scholar
  18. Sfarti, A. “Electrodynamics in Uniformly Rotating Frames as Viewed from an Inertial Frame”, IJPOT, 8, 2, (2017).
     Google Scholar
  19. Thomas, L. H. “Motion of the spinning electron”, Nature. 117 (2945) (1926).
     Google Scholar
  20. Wigner, E. P., “On unitary representations of the inhomogeneous Lorentz group’, Annals of Mathematics, 40 (1) (1939).
     Google Scholar