##plugins.themes.bootstrap3.article.main##

In this paper, we solve analytically the Schrodinger equation for s-wave and arbitrary angular momenta with the Hua potential is investigated respectively. The wave function as well as energy equation are obtained in an exact analytical manner via the Nikiforov Uvarov method using two approximations scheme. Some special cases of this potentials are also studied.

References

  1. A.N. Ikot, U.S. Okorie, G. Osobonye, P.O. Amadi, C.O. Edet, M.J. Sithole, G.J. Rampho, R. Sever, Superstatistics of Schrödinger equation with pseudo-harmonic potential in external magnetic and Aharanov-Bohm fields, Heliyon 6 (2020) e03738, https://doi.org/10.1016/j.heliyon.2020.e03738.
     Google Scholar
  2. A.N. Ikot, U.S. Okorie, A.T. Ngiangia, C.A. Onate, C.O. Edet, I.O. Akpan, P.O. Amadi, Bound state solutions of the Schrödinger equation with energy dependent molecular Kratzer potential via asymptotic iteration method, Eclet. Quím. J. 45 (2020) 65, https://doi.org/10.26850/1678-4618eqj.v45.1.p65-76.
     Google Scholar
  3. H. Louis, B.I. Ita, T.O. Magu, O.U. Akakuru, N.A. Nzeata-Ibe, A.I Ikeuba, A.I. Pigweh and C.O. Edet, Solutions to the Dirac Equation for Manning-Rosen Plus Shifted Deng-Fan Potential and Coulomb-Like Tensor Interaction Using Nikiforov-Uvarov Method, Intl. J. Chem. 10 (2018) 99, https://doi.org/10.5539/ijc.v10n3p99.
     Google Scholar
  4. C.O. Edet, U.S. Okorie, A.T. Ngiangia and A.N. Ikot, Bound state solutions of the Schrodinger equation for the modified Kratzer potential plus screened Coulomb potential, Ind. J. Phys. 94 (2019) 425, https://doi.org/10.1007/s12648-019-01467-x.
     Google Scholar
  5. C.O. Edet, K.O. Okorie, H. Louis and N.A. Nzeata-Ibe, Any l-state solutions of the Schrodinger equation interacting with Hellmann–Kratzer potential model, Indian J Phys 94 (2020) 243, https://doi.org/10.1007/s12648-019-01477-9.
     Google Scholar
  6. H. Louis, B.I. Ita, O.U. Akakuru, N.A. Nzeata-Ibe, A.I. Ikeuba, T.O. Magu, P.I. Amos and C.O. Edet, l-state Solutions of the Relativistic and Non-Relativistic Wave Equations for Modified Hylleraas-Hulthen Potential Using the Nikiforov-Uvarov Quantum Formalism, Oriental J. Phys. Sci. 3 (2018) 1. http://www.orientjphysicalsciences.org/.
     Google Scholar
  7. G. J. Rampho , A. N. Ikot , C. O. Edet & U. S. Okorie, Energy spectra and thermal properties of diatomic molecules in the presence of magnetic and AB fields with improved Kratzer potential, Mol. Phys, (2020) https://doi.org/10.1080/00268976.2020.1821922.
     Google Scholar
  8. C O Edet, P O Okoi, A S Yusuf, P O Ushie and P O Amadi, Bound state solutions of the generalized shifted Hulthe´n potential, Indian J. Phys. (2019) https://doi.org/10.1007/s12648-019-01650-0.
     Google Scholar
  9. A. N. Ikot, C. O. Edet, P. O. Amadi, U. S. Okorie, G. J. Rampho, and H. Y. Abdullah, Thermodynamic properties of Aharanov-Bohm (AB) and magnetic fields with screened Kratzer potential, Eur. Phys. J. D 74 (2020) 159, https://doi.org/10.1140/epjd/e2020-10084-9.
     Google Scholar
  10. C. O. Edet, P. O. Okoi, S. O. Chima, Analytic solutions of the Schrödinger equation with non-central generalized inverse quadratic Yukawa potential, Rev. Bras. Ens. Fís. 42 (2019) e20190083. https://doi.org/10.1590/1806-9126-RBEF-2019-0083.
     Google Scholar
  11. P.O. Okoi, C.O. Edet and T.O.Magu, Relativistic treatment of the Hellmann-generalized Morse potential, Rev. Mex. Fis. 66 (2020) 1, https://doi.org/10.31349/RevMexFis.66.1
     Google Scholar
  12. C.O. Edet and P.O. Okoi, Any l-state solutions of the Schrödinger equation for q-deformed Hulthen plus generalized inverse quadratic Yukawa potential in arbitrary dimensions Rev. Mex. Fis. 65 (2019) 333, https://doi.org/10.31349/RevMexFis.65.333.
     Google Scholar
  13. C.O. Edet, U.S. Okorie, G. Osobonye, A.N. Ikot, G.J. Rampho and R. Sever, Thermal properties of Deng–Fan–Eckart potential model using Poisson summation approach, J. Math. Chem. 58 (2020) 989. https://doi.org/10.1007/s10910-020-01107-4.
     Google Scholar
  14. U. S. Okorie, A. N. Ikot, C. O. Edet, I. O. Akpan, R. Sever and R. Rampho, Solutions of the Klein Gordon equation with generalized hyperbolic potential in D-dimensions, J. Phys. Commun. 3 (2019) 095015, https://doi.org/10.1088/2399-6528/ab42c6.
     Google Scholar
  15. B.I. Ita, H. Louis, O.U. Akakuru, N.A. Nzeata-Ibe, A.I. Ikeuba, T.O. Magu, P.I. Amos and C.O. Edet, Approximate Solution to the Schrödinger Equation with Manning-Rosen plus a Class of Yukawa Potential via WKBJ Approximation Method, Bulg. J. Phys. 45 (2018) 323. https://www.bjp-bg.com/paper1.php?id=914.
     Google Scholar
  16. C. O. Edet, P. O. Amadi, M. C. Onyeaju, U. S. Okorie, R. Sever, G. J. Rampho, Hewa Y. Abdullah, Idris H. Salih and A. N. Ikot, Thermal Properties and Magnetic Susceptibility of Hellmann Potential in Aharonov–Bohm (AB) Flux and Magnetic Fields at Zero and Finite Temperatures. Journal of Low Temperature Physics (2020). https://doi.org/10.1007/s10909-020-02533-z.
     Google Scholar
  17. C.O. Edet, P.O. Amadi, U.S. Okorie, A. Tas, A.N. Ikot and G. Rampho, Solutions of Schrödinger equation and thermal properties of generalized trigonometric P¨oschl-Teller potential. (2020). Rev. Mex. Fıs. 66 (2020) 824. https://doi.org/10.31349/RevMexFis.66.824.
     Google Scholar
  18. W. Hua, Four-parameter exactly solvable potential for diatomic molecules. Phys. Rev. A, 42 (1990)2524.
     Google Scholar
  19. G. H. Sun & S. H. Dong, Relativistic treatment of spinless particles subject to a Tietz—Wei oscillator. Communications in Theoretical Physics, 58 (2012) 195.
     Google Scholar
  20. A. N. Ikot, E. Maghsoodi, E. Ibanga, E. Ituen, & H. Hassanabadi, Bound states of the Dirac equation for Modified Mobius square potential within the Yukawa-like tensor interaction. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 86 (2016) 433.
     Google Scholar
  21. U S Okorie, C O Edet, A N Ikot, G J Rampho and R Sever, Thermodynamic functions for diatomic molecules with modified Kratzer plus screened Coulomb potential, Indian J Phys (2020) https://doi.org/10.1007/s12648-019-01670-w.
     Google Scholar
  22. Ekpo, C. M., Inyang, E. P., Okoi, P. O, Magu, T. O., Agbo, E. P., Okorie, K. O., Inyang, E. P., (2020) New Generalized Morse-Like Potential for Studying the Atomic Interaction in Diatomic Molecules.arXiv.2012.02581[quant-ph].
     Google Scholar
  23. Yazarloo BH, Hassanabadi H, Zarrinkamar S (2012) Oscillator strengths based on the Mobius square potential under Schrödinger equation. EPJ Plus 127:51s.
     Google Scholar
  24. P. O. Amadi, C. O.Edet, U. S. Okorie, G. T. Osobonye, G. J. Rampho & A. N. Ikot, Superstatistics of the screened Kratzer potential with Modified Dirac Delta and Uniform Distributions. (2020) arXiv preprint arXiv:2001.10496.
     Google Scholar
  25. C. O. Edet, P. O. Amadi, A. N. Ikot, U. S. Okorie, A. Tas & G. J. Rampho (2019). Thermodynamic properties of the Superstatistics and Normal Statistics of the Schrodinger Equation with generalized trigonometric Poschl Teller potential. arXiv preprint arXiv:1912.00148.
     Google Scholar
  26. Edet, C. (2020). Effects of Magnetic And Aharanov-Bohm (AB) Fields on the Energy Spectra of the Yukawa Potential. arXiv preprint arXiv:2012.08644.
     Google Scholar
  27. A. N. Ikot, U. S. Okorie, G. J. Rampho, P. O. Amadi, C. O. Edet, I. O. Akpan, H. Y. Abdullah & R. Horchani, Klein–Gordon Equation and Nonrelativistic Thermodynamic Properties with Improved Screened Kratzer Potential. Journal of Low Temperature Physics, 1-21. (2021). https://doi.org/10.1007/s10909-020-02544-w.
     Google Scholar
  28. Ikot, A. N., Okorie, U. S., Amadi, P. O., Edet, C. O., Rampho, G. J., & Sever, R. (2021). The Nikiforov–Uvarov-Functional Analysis (NUFA) Method: A New Approach for Solving Exponential-Type Potentials. Few-Body Systems, 62(1), 1-16.
     Google Scholar
  29. Edet, C. O., Ikot, A. N., Onyeaju, M. C., Okorie, U. S., Rampho, G. J., Lekala, M. L., & Kaya, S. (2021). Thermo-Magnetic Properties of the Screened Kratzer potential with Spatially varying mass under the influence of Aharanov-Bohm (AB) and Position-Dependent Magnetic fields. Physica E: Low-dimensional Systems and Nanostructures, 114710.
     Google Scholar
  30. Ikot, A. N., Edet, C. O., Okorie, U. S., Abdel-Aty, A. H., Ramantswana, M., Rampho, G. J., & Kaya, S. (2021). Solutions of the 2D Schrodinger equation and its thermal properties for improved ultra-generalized exponential hyperbolic potential (IUGE-HP). The European Physical Journal Plus, 136(4), 1-18.
     Google Scholar
  31. Edet, C. O., & Ikot, A. N. (2021). Effects of Topological Defect on the Energy Spectra and Thermo-magnetic Properties of $$ CO $$ CO Diatomic Molecule. Journal of Low Temperature Physics, 203(1), 84-111.
     Google Scholar
  32. Edet, C. O., & Ikot, A. N. (2021). Shannon information entropy in the presence of magnetic and Aharanov–Bohm (AB) fields. The European Physical Journal Plus, 136(4), 1-11.
     Google Scholar
  33. Okorie, U. S., Ikot, A. N., Edet, C. O., Rampho, G. J., Horchani, R., & Jelassi, H. (2021). Bound and scattering states solutions of the Klein–Gordon equation with generalized Mobius square potential in D-dimensions. The European Physical Journal D, 75(2), 1-8.
     Google Scholar