##plugins.themes.bootstrap3.article.main##

This paper introduces the basic construct of quantum mechanics to financial researchers by applying it to a modeling of the stock prices. We present the meanings of the wavefunction, the Hamiltonian operator and the Schrödinger's equation in common mathematical terms, with an illustration of how the ever-present binary random variable can be connected to the spin operator in physics.

References

  1. Baaquie BE. Quantum finance Hamiltonian for coupon bond European and barrier options. Phys. Rev. E. 2008;77:1-20. https://doi:10.1103/PhysRevE.77.036106.
     Google Scholar
  2. Ramos-Calderer S, Pérez-Salinas A, García-Martín D, Bravo-Prieto C, Cortada J, Planagumà, J, et al. Quantum unary approach to option pricing. Phys. Rev. A. 2021;10:1-24. https://doi.org/10.1103/PhysRevA.103.032414.
     Google Scholar
  3. Baaquie BE. Interest rates in quantum finance: The Wilson expansion and Hamiltonian. Phys. Rev. E. 2009; 80: 046119 (1-23). https://doi:10.1103/PhysRevE.80.046119.
     Google Scholar
  4. Rebentrost P, Gupt B, Bromley TR. Quantum computational finance: Monte Carlo pricing of financial derivatives. Phys. Rev. A. 2018;98:1-15. https://doi.org/10.1103/PhysRevA.98.022321.
     Google Scholar
  5. Hegade NN, Paul CK, Chen X, Albarrán-Arriagada F, Solano E. Portfolio optimization with digitized counterdiabatic quantum algorithms. Phys. Rev. Research. 2022;4:1-9. https://doi.org/10.1103/PhysRevResearch.4.043204.
     Google Scholar
  6. Nakaji K, Uno S, Suzuki Y, Raymond R, Onodera T, Tanaka T, et al. Approximate amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicators. Phys. Rev. Research. 2022;4:1-20. https://doi:10.1103/PhysRevResearch.4.023136.
     Google Scholar
  7. Milz S, Modi K. Quantum stochastic processes and quantum non-Markovian phenomena. PRX Quantum. 2021;2:1-81. https://doi:10.1103/PRXQuantum.2.030201.
     Google Scholar