##plugins.themes.bootstrap3.article.main##

Most collisions that we witness are inelastic. Irrationally, the sciences have evolved around elastic collisions, which allows for simpler mathematical modelling. Since a result of inelastic collisions are photons, we examine the feasibility of an ensemble of inelastic collisions producing a blackbody spectrum. This will lead to reconsideration of how the light that governs our lives is produced, i.e., light from both the stars and incandescent lightbulbs.

A brief discussion of entropy being a mathematical contrivance based upon elastic collisions is included. A consequence of collisions being inelastic becomes, entropy can only be an approximation when applied to the real world. And this fits well with “New Thermodynamics”.

References

  1. Mayhew, K.W., “A new perspective for kinetic theory and heat capacity” Prog. In Phys. 13, 3, 2017 pp.166-173.
     Google Scholar
  2. Mayhew, K.W., “Kinetic theory: Flatlining of polyatomic gases:” Prog. In Phys. 14, 2 2018 pp. 75-79.
     Google Scholar
  3. Mayhew, K.W., “New thermodynamics: Untangling entropy’s web, Self-published 2020.
     Google Scholar
  4. Mayhew K.W., “Illusions of Elastic Collisions in the Sciences: An Essay”, EJERS, Vol. 5, 1, (2020) pp. 87-90.
     Google Scholar
  5. Carroll, S., “From eternity to here: The quest for the ultimate theory of time” Penguin group 375 Hudson street New York New York, 2010.
     Google Scholar
  6. Hawkin Stephen “A brief history of time” Bantam Dell Publishing 1988.
     Google Scholar
  7. Atkins, P. “Four laws that drive the universe” Oxford University Press Oxford England 2007.
     Google Scholar
  8. Ben-Naim, Arieh, “Time’s Arrow (?): The timeless nature of entropy and the second law of thermodynamics Lulu Publishing 2018.
     Google Scholar
  9. Mayhew, K.W., “Entropy: An ill-conceived mathematical contrivance?”, Phys. Essays, 28, 3 (2015), pp. 352-357.
     Google Scholar
  10. Mayhew, K.W., “New Thermodynamics: Reversibility and Free Energy”, Hadronic Journal, Vol 43, 1, 2020 pp. 51-60.
     Google Scholar
  11. Mayhew, K.W. “Resolving problematic thermodynamics” Hadronic Journal, Vol 41, 2018 pp. 257-272.
     Google Scholar
  12. Mayhew K.W., “New Thermodynamics: Inefficiency of a Piston-cylinder”, EJERS, Vol. 5, 2, (2020), pp. 187-191.
     Google Scholar
  13. Mayhew. K. W., “New Thermodynamics: Reversibility, Entropy and Adiabatic Processes”, E-J Phys. Vol 2 (3) 2020 pp.1-6.
     Google Scholar
  14. Aguirre, J. and Hernandez, H. (2020). Entropy: A Physical Entity or a Mathematical Construct? ForsChem Research Reports, 5, 2020-10. doi: 10.13140/RG.2.2.34938.93124.
     Google Scholar
  15. Hatsopoulos, G., N. Beretta, G. P., “Where is the entropy challenge?” AIP Conference Proceedings 1033, 34 (2008); https://doi.org/10.1063/1.2979057.
     Google Scholar
  16. Mayhew K.W., “Second law and lost work”. Phys. Essays, 28, 1 (2015) pp. 152-155.
     Google Scholar
  17. Capek, V., Sheehan, D. P., “Challenges to the Second law of thermodynamics: Theory and Experiment” Springer press, Neatherlands, 2005.
     Google Scholar
  18. Dunning-Davis, J, Norman R.L. “Truth in Paradigms” Standing Dead Publications, 2017.
     Google Scholar
  19. Pitchford, L.C., McKoy B.V., Chutjian, A, Trajmat, S, “Inelastic electron molecule collisions Proceedings of the Fourth Swarm Seminar” Springer-Verglan, New York, 2012.
     Google Scholar
  20. Mayhew K.W., “New Thermodynamics: Temperature, Sun’s Insolation, Thermal, and Blackbody Radiation” EJERS, Vol. 5, 3(2020) pp. 264-270.
     Google Scholar
  21. Eisberg, R., Resnick, R., “Quantum Physics”, John Wiley & Sons Toronto 1974.
     Google Scholar
  22. Robitaille, J.L., Robitaille, P.-M., “The liquid metallic hydrogen model of the Sun and solar atmosphere VIII. ‘Futile’ processes in the chromosphere” Prog. In Phys. 10, 1, 2014 pp. 36-37.
     Google Scholar
  23. Robitaille, P.-M., “Liquid-metallic hydrogen: A building block for liquid Sun”, Prog. In Phys. 3, 3, 2011 pp. 60-74.
     Google Scholar
  24. Robitaille, P.-M., “A thermodynamic history of the solar constitution-I: The journey to a gaseous Sun”. Prog. In Phys. 3, 3, 2011 pp. 3-25.
     Google Scholar
  25. Eddington, A.S., “The internal constitution of stars”, Dover Publ. New York, 1959.
     Google Scholar
  26. Robitaille, P.-M., “The thermodynamic history of solar constitution-II: The theory of a gaseous Sun and Jeans’ failed Liquid alternative”, Prog. In Phys. 3, 3, 2011 pp. 41-59.
     Google Scholar
  27. Special Issue “The Sun – Gaseous or liquid? A thermodynamic analysis” Prog. In Phys. 3, 3, 2011 pp. 3-102.
     Google Scholar
  28. Robitaille, P.-M., “Forty lines of evidence for condensed matter- The Sun on trial. Liquid metallic hydrogen as a solar building block” Prog. In Physics, Special report 2013 pp. 90-142.
     Google Scholar
  29. Kirchhoff G. Uber das Verhaltnis zwischen dem Emissionsvermogen und dem Absorptionsvermogen. der Korper fur Warme und Licht. Poggendorfs Annalen der Physik und Chemie, 1860, v. 109, 275-301. (English translation by F. Guthrie: Kirchhoff G. On the relation between the radiating and the absorbing powers of different bodies for light and heat. Phil. Mag., 1860, ser. 4, v. 20, 1-21).
     Google Scholar
  30. Attard, P. “Thermodynamics and Statistical Mechanics” Academic Press London 2002.
     Google Scholar
  31. Reif, F. “Fundamentals of statistical and thermal physics” McGraw-Hill, New York, 1965.
     Google Scholar
  32. Mayhew K.W., “New thermodynamics: Rethinking the Science of climate change”, EJERS, Vol. 5, 5, (2020), pp. 559-564.
     Google Scholar