New Thermodynamics: Inelastic Collisions, Blackbody Radiation, Entropy and Light
##plugins.themes.bootstrap3.article.main##
Most collisions that we witness are inelastic. Irrationally, the sciences have evolved around elastic collisions, which allows for simpler mathematical modelling. Since a result of inelastic collisions are photons, we examine the feasibility of an ensemble of inelastic collisions producing a blackbody spectrum. This will lead to reconsideration of how the light that governs our lives is produced, i.e., light from both the stars and incandescent lightbulbs.
A brief discussion of entropy being a mathematical contrivance based upon elastic collisions is included. A consequence of collisions being inelastic becomes, entropy can only be an approximation when applied to the real world. And this fits well with “New Thermodynamics”.
References
-
Mayhew, K.W., “A new perspective for kinetic theory and heat capacity” Prog. In Phys. 13, 3, 2017 pp.166-173.
Google Scholar
1
-
Mayhew, K.W., “Kinetic theory: Flatlining of polyatomic gases:” Prog. In Phys. 14, 2 2018 pp. 75-79.
Google Scholar
2
-
Mayhew, K.W., “New thermodynamics: Untangling entropy’s web, Self-published 2020.
Google Scholar
3
-
Mayhew K.W., “Illusions of Elastic Collisions in the Sciences: An Essay”, EJERS, Vol. 5, 1, (2020) pp. 87-90.
Google Scholar
4
-
Carroll, S., “From eternity to here: The quest for the ultimate theory of time” Penguin group 375 Hudson street New York New York, 2010.
Google Scholar
5
-
Hawkin Stephen “A brief history of time” Bantam Dell Publishing 1988.
Google Scholar
6
-
Atkins, P. “Four laws that drive the universe” Oxford University Press Oxford England 2007.
Google Scholar
7
-
Ben-Naim, Arieh, “Time’s Arrow (?): The timeless nature of entropy and the second law of thermodynamics Lulu Publishing 2018.
Google Scholar
8
-
Mayhew, K.W., “Entropy: An ill-conceived mathematical contrivance?”, Phys. Essays, 28, 3 (2015), pp. 352-357.
Google Scholar
9
-
Mayhew, K.W., “New Thermodynamics: Reversibility and Free Energy”, Hadronic Journal, Vol 43, 1, 2020 pp. 51-60.
Google Scholar
10
-
Mayhew, K.W. “Resolving problematic thermodynamics” Hadronic Journal, Vol 41, 2018 pp. 257-272.
Google Scholar
11
-
Mayhew K.W., “New Thermodynamics: Inefficiency of a Piston-cylinder”, EJERS, Vol. 5, 2, (2020), pp. 187-191.
Google Scholar
12
-
Mayhew. K. W., “New Thermodynamics: Reversibility, Entropy and Adiabatic Processes”, E-J Phys. Vol 2 (3) 2020 pp.1-6.
Google Scholar
13
-
Aguirre, J. and Hernandez, H. (2020). Entropy: A Physical Entity or a Mathematical Construct? ForsChem Research Reports, 5, 2020-10. doi: 10.13140/RG.2.2.34938.93124.
Google Scholar
14
-
Hatsopoulos, G., N. Beretta, G. P., “Where is the entropy challenge?” AIP Conference Proceedings 1033, 34 (2008); https://doi.org/10.1063/1.2979057.
Google Scholar
15
-
Mayhew K.W., “Second law and lost work”. Phys. Essays, 28, 1 (2015) pp. 152-155.
Google Scholar
16
-
Capek, V., Sheehan, D. P., “Challenges to the Second law of thermodynamics: Theory and Experiment” Springer press, Neatherlands, 2005.
Google Scholar
17
-
Dunning-Davis, J, Norman R.L. “Truth in Paradigms” Standing Dead Publications, 2017.
Google Scholar
18
-
Pitchford, L.C., McKoy B.V., Chutjian, A, Trajmat, S, “Inelastic electron molecule collisions Proceedings of the Fourth Swarm Seminar” Springer-Verglan, New York, 2012.
Google Scholar
19
-
Mayhew K.W., “New Thermodynamics: Temperature, Sun’s Insolation, Thermal, and Blackbody Radiation” EJERS, Vol. 5, 3(2020) pp. 264-270.
Google Scholar
20
-
Eisberg, R., Resnick, R., “Quantum Physics”, John Wiley & Sons Toronto 1974.
Google Scholar
21
-
Robitaille, J.L., Robitaille, P.-M., “The liquid metallic hydrogen model of the Sun and solar atmosphere VIII. ‘Futile’ processes in the chromosphere” Prog. In Phys. 10, 1, 2014 pp. 36-37.
Google Scholar
22
-
Robitaille, P.-M., “Liquid-metallic hydrogen: A building block for liquid Sun”, Prog. In Phys. 3, 3, 2011 pp. 60-74.
Google Scholar
23
-
Robitaille, P.-M., “A thermodynamic history of the solar constitution-I: The journey to a gaseous Sun”. Prog. In Phys. 3, 3, 2011 pp. 3-25.
Google Scholar
24
-
Eddington, A.S., “The internal constitution of stars”, Dover Publ. New York, 1959.
Google Scholar
25
-
Robitaille, P.-M., “The thermodynamic history of solar constitution-II: The theory of a gaseous Sun and Jeans’ failed Liquid alternative”, Prog. In Phys. 3, 3, 2011 pp. 41-59.
Google Scholar
26
-
Special Issue “The Sun – Gaseous or liquid? A thermodynamic analysis” Prog. In Phys. 3, 3, 2011 pp. 3-102.
Google Scholar
27
-
Robitaille, P.-M., “Forty lines of evidence for condensed matter- The Sun on trial. Liquid metallic hydrogen as a solar building block” Prog. In Physics, Special report 2013 pp. 90-142.
Google Scholar
28
-
Kirchhoff G. Uber das Verhaltnis zwischen dem Emissionsvermogen und dem Absorptionsvermogen. der Korper fur Warme und Licht. Poggendorfs Annalen der Physik und Chemie, 1860, v. 109, 275-301. (English translation by F. Guthrie: Kirchhoff G. On the relation between the radiating and the absorbing powers of different bodies for light and heat. Phil. Mag., 1860, ser. 4, v. 20, 1-21).
Google Scholar
29
-
Attard, P. “Thermodynamics and Statistical Mechanics” Academic Press London 2002.
Google Scholar
30
-
Reif, F. “Fundamentals of statistical and thermal physics” McGraw-Hill, New York, 1965.
Google Scholar
31
-
Mayhew K.W., “New thermodynamics: Rethinking the Science of climate change”, EJERS, Vol. 5, 5, (2020), pp. 559-564.
Google Scholar
32
Most read articles by the same author(s)
-
Kent W. Mayhew,
New Thermodynamics: Inelastic Collisions and Cosmology , European Journal of Applied Physics: Vol. 2 No. 6 (2020) -
Kent W. Mayhew,
New Thermodynamics: Understanding Temperature’s Limitations , European Journal of Applied Physics: Vol. 2 No. 2 (2020) -
Kent W. Mayhew,
New Thermodynamics: Reversibility, Entropy and Adiabatic Processes , European Journal of Applied Physics: Vol. 2 No. 2 (2020)