What is Hidden in the Planck Distribution Function and the Wien´s Peaks? I. Three Features of the Solar Photons

##plugins.themes.bootstrap3.article.main##

  •   Jiří Stávek

Abstract

There were derived many forms of the Planck distribution function (PDF) since its discovery by Planck in 1900 and formulae for the positions of Wien´s peaks in those distributions. There are three features of the Solar photons – their refrangibility, their heat effect, and their chemical effect. The first feature – their refrangibility – can be modelled using the linear-wavelength dispersion rule for spectrometers with diffraction gratings and using the frequency-square rule for spectrometers with prisms. However, there are no accepted forms of the PDF to model heat effect of the Solar photons on atoms and molecules, and to model the effect of the PDF on chemical reactions where the Solar photons play very significant role. We have summarized the known forms of the PDF and positions of Wien´s peaks in order to search some hidden properties in those mathematical structures. It will be shown that these very well-known formulae to all scholars might still keep some hidden surprising properties.

Keywords: Hidden Properties of the PDF, Planck Distribution Function (PDF), Solar Photons, Wien´s Peaks

References

Wien W. Eine neue Beziehung der Strahlung schwarzer Körper zum zweiten Hauptsatz der Wärmetheorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin. 1893; S. 55. German.

Wien W. Űber die Energievertheilung im Emissionspectrum eines schwarzen Körpers. Annalen der Physik und Chemie. 1896; 294(8): 662-669. German.

Planck M. Űber eine Verbesserung der Wien´schen Spectralgleichung. Verhandlungen der Deutschen Physikalischen Gesselschaft. 1900; 2: 202-204. German.

Einstein A. Űber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik. 1905; 17: 164-181. German.

Nernst W. (Editor). Die Theorie der Strahlung und der Quanten. Verhandlungen auf einer von E. Solvay einberufenen Zusammenkunft (30. Oktober bis 3. November 1911). Knapp Verlag, Halle a.S., 1914. German.

Kangro H. Vorgeschichte des Plankschen Strahlungsgesetzes. Messungen und Theorien der Spektralen Energieverteilung bis zur Begründung der Quantenhypothese. Franz Steiner Verlag, Wiesbaden, 1970. German.

Kuhn TS. Black-body theory and the quantum discontinuity, 1894-1912. The University Chicago Press, 1978.

Gershun AA. On the spectral density of radiation. Uspekhi Fizicheskich Nauk. 1952; (3): 388-395. Russian.

Foitzik L. Űber die Darstellung der spektkralen Energieverteilung von Strahlungsquellen. Experimentelle Technik der Physik. 1953; 1953(4/5): 209-213. German.

Bracewell RN. The maximum of the Planck energy spectrum. Nature (London). 1954; 4429: 563-564.

Gurevich MM. On the spectral distribution of radiant energy. Uspekhi Fizicheskikh Nauk. 1955; 56(3): 417-424.

Sapozhnikov RA. Spectral distribution of radiant energy. Soviet Physics Uspekhi. 1960; 3(1): 172-174.

Chiu WC. On the interpretation of the energy spectrum. American Journal of Physics. 1967; 35(7): 642-648.

Soffer BH, Lynch DK. Some paradoxes, errors, and resolutions concerning the spectral optimization of human vision. American Journal of Physics, 1999; 67(11): 946-953.

Overduin JM. Eyesight and the Solar Wien peak. American Journal of Physics, 2003; 71(3): 216-219.

Heald MA. Where is the „Wien peak“? American Journal of Physics, 2003; 71(12): 1322-1323.

Kramm G, Mölders N. Planck´s blackbody radiation law: presentation in different domains and determination of the rrelated dimensional constants. Arxiv: 0901.1863v2.

Zhang ZM, Wang XJ. Unified Wien´s displacement law in terms of logarithmic frequency or wavelength scale. Journal of Thermophysics and Heat Transfer. 2010; 24(1): 222-224.

Stewart SM. Wien peaks and the Lambert W function. Revista Brasileira de Ensimo de Física. 2011; 33(3): 3308.

Stewart SM. Spectral peaks and Wien´s displacement law. Journal of Thermophysics ad Heat Transfer. 2012; 26(4): 689-691.

Marr JM, Wilkin FP. A better presentation of Planck´s radiation law. Arxiv: 1109.3822v3.

Deldago-Bonal A. Entropy of radiation: the unseen side of light. Scientific Reports. 2017; 7: 1642.

Hagen N. Spectra, images, simple functions, and density functions. 2021 11th Workshop on hyperspectral imaging and signal processing: evolution in remote sensing (WHISPERS), Amsterdam, Netherlands, 2021, pp. 1-5.

Kostić L, Mančev I. Lambert W function ad different forms of Wien´s displacement law. Romanian Reports in Physics. 2021; 73: 906.

Calculation of blackbody radiance. Arxiv: 2108.03119. Last accessed Janaury 24, 2023.

Gnanarajan S. Application of Lambert W function to Planck spectral radiance frequencies. Journal of Applied Mathematics and Physics, 2021; 9: 2500-2510.

Marcus Marci J. Thaumantias, Liber de arcu coelesti, deque colorum apparentium, natura, ortu et causis. Prague 1648; reproduced 1968. Latin.

Marek J. Marcus Marci´s results in the optics of radiation. In Joannes Marcus Marci – A seventeenth-century Bohemian polymath, Svobodny P. (Ed.), Charles University Press, Prague; 1998. ISBN 80-7184-475-6.

Garber MD. Chymical wonders of light: J. Marcus Marci´s seventeenth-century Bohemian optics. Early Science and Medicine, 2005; 10(4): 486-518.

Newton I. Optics or a treatise of the reflections, refractions, inflections, & colours of light. Dover Publications, 2014.

Westfall RS. The development of Newton´s theory of color. Isis. 1962; 53(3): 339-358.

Rochon AM. (1783). Sur la degré de chaleur des rayons colorés. English trans. An essay on the degree of warmth of coloured rays. Philosophical Magazine. 45: 410-414.

Wünsch CE. Versuche über die vermeinte Sonderung des Lichtes der Sonnenstrahlen von der Wärme derselben. Magazin der Gesselschaft Naturforschende Freunde zu Berlin. 1807; 185-207. German

Seebeck TJ. Ueber die ungleiche Erregung der Wärme im prismatischen Sonnebilde. Abhandlungen der königlichen Akademie der Wissenschaften in Berlin aus den Jahren 1818-1819. Berlin, 1820, pp. 305-350. German.

Seebeck TJ. On the unequal evolution of heat in the prismatic spectrum. Philosophical Magazine. 1825; 66: 330-343, 445-455.

Cornell ES. The radiant heat spectrum from Herschel to Melloni I. The work of Herschel and his contemporaries. Annals of Science. 1938; 3: 119-137.

Cornell ES. The radiant heat spectrum from Herschel to Melloni II. The work of Melloni and his contemporaries. Annals of Science. 1938; 3: 402-413.

Barr ES. Historical survey of the early development on the infrared spectral region. American Journal of Physics. 1960; 28: 42-54.

Barr ES. The infrared pioneers – I. Sir William Herschel. Infrared Physics. 1961; 1: 1-10.

Hentschel K. Mapping the spectrum. Techniques of visual representation in research and teaching. Oxford University Press, Oxford, 2009, Ch. 2, pp. 21-72.

Herschel W. Investigations of the powers of the prismatic colours to heat and illuminate objects; with remarks that prove the different refrangibility of radiant heat. Philosophical Transactions of the Royal Society, London. 1800; pp. 255-283, 284-292, 293-326, 437-538.

Lowell DJ. Herschel´s dilemma in the interpretation of thermal radiation. Isis. 1968; 59(1): 46-60.

Hilbert M. Herschel´s investigation of the Nature of radiant heat: the limitations of experiment. Annals of Science. 199; 56: 357-378.

Minkina W. How infrared radiation was discovered – range of this discovery and detailed, unknown information. Applied Sciences. 2021; 11: 9824.

Kangro H. Vorgeschichte des Plankschen Strahlungsgesetzes. Messungen und Theorien der Spektralen Energieverteilung bis zur Begründung der Quantenhypothese. Franz Steiner Verlag, Wiesbaden, 1970. German. pp. 23-26.

Ghosh G. Handbook of Refractive Index and Dispersion of Water for Scientists and Engineers: Optic and Pressure-Optic Coefficients of Water. Independent Publisher; 2021.

Wikipedia.org Refractive index. Available from https://en.wikipedia.org/wiki/Refractive_index [updated 2022 December 22; cited 2023 January 22].

Chang SL, Rhee KT. Blackbody radiation functions. International Communications in Heat and Mass Transfer. 1984; 11(5): 451-455.

Jain PK. IR, visible, and UV components in the spectral distribution of blackbody radiation. Physics Education, 1996; 31:149-155.

Lawson D. A closer look at Planck´s blackbody equation. Physics Education. 1997; 35(5): 321-326.

Lawson DL. The blackbody fraction, infinite series and spreadsheets. International Journal of Engineering Education. 2004; 20(6): 984-900.

Ritter JW. Am 22sten Februar (Discovery of UV light). Annalen der Physik. 1801; 7, 527. German.

Link HF. Ueber die chemischen Eigenschaften des Licht: Versuch einer Beantwortung der von Kaiserlichen Akademie der Wissenschaften zu Petersburg aufgeworfenen Frage. St. Petersburg: Kaiserliche Akademie der Wissenschaften.1808. German.

Hentschel K. Unsichtbares Licht? Dunkle Wärme? Chemische Strahlen? Eine wissenschaftshistorische und -theoretische Analyse von Argumenten für das Klassifizieren von Strahlungsorten 1650-1925 mit Schwerpunkt auf den Jahren 1770-1900. GNT-Verlag GmbH, 2007. ISBN-10: 3928186841. German.

Frercks J, Weber H, Wiesenfeldt G. Reception and Discovery: the nature of Johann Willhelm Ritter´s invisible rays. Studies in History and Philosophy of Science. 2009; 40: 143-156.

Balzani V, Ceroni P, Juris A. Photochemistry and Photophysics: concepts, research, applications. Wiley-CH. 2014. ISBN-10: 9783527334797.

Albini A. Photochemistry: past, present and future. Springer. 2016. ISBN-10: 3662507811

Persico M, Granucci G. Photochemistry: A modern theoretical perspective (Theoretical chemistry and computational modelling). Springer. 2019. ISBN-10: 3030079066.

##plugins.themes.bootstrap3.article.details##

How to Cite
Stávek, J. (2023). What is Hidden in the Planck Distribution Function and the Wien´s Peaks? I. Three Features of the Solar Photons. European Journal of Applied Physics, 5(2), 1–8. https://doi.org/10.24018/ejphysics.2023.5.2.240

Most read articles by the same author(s)

1 2 > >>