Photoluminescence Properties of InGaN/InGaN MQWs with Different Electron Injection Layers
##plugins.themes.bootstrap3.article.main##
The structural and optical properties of InxGa1-xN/InyGa1-yN multi quantum well (MQW) light emitting devices with/without electron injection layers were studied. The samples with electron injection layer consist of step-graded (GIE) and two step staircase (SEI) electron injection layer between n-type GaN and MQWs active region. Edge and screw type of dislocation densities were deduced from High Resolution X-Ray Diffraction (HR-XRD) curves and no significant difference were realized. The zeroth and higher order satellite peaks were more clearly observed in the sample without electron injection layer. Optical characterization was carried out by temperature dependent photoluminescence (PL) technique. It was found that the PL densities of samples with step-graded and two step-staircase electron injection layers had almost two times lower temperature dependence compared to the reference sample without electron injection layer. On the other hand, the line width of the photoluminescence peak associated with MQWs is much narrower at low temperature for sample without electron injection layer than the other two samples.
References
-
Nakamura S, Fasol G, Pearton SJ. The Blue Laser Diode: The Complete Story (2nd updated and extended ed. 2000). Springer: 2000.
Google Scholar
1
-
Ponce FA, Bour DP. (1997). Nitride-based semiconductors for blue and green light-emitting devices. Nature, 1997; 386(6623): 351–359. https://doi.org/10.1038/386351a0.
Google Scholar
2
-
Ozbay E, Biyikli N, Kimukin I, Kartaloglu T, Tut T, Aytur O. High performance solar-blind photodetectors based on AlxGa1-xN heterostructures. IEEE Journal of Selected Topics in Quantum Electronics, 2004;10(4):742-751. http://dx.doi:10.1109/JSTQE.2004.831681.
Google Scholar
3
-
Teke A, Dogan S, He L, Huang D, Yun F, Mikkelson M, Morkoç H, Zhang SK, Wang WB, Alfano RR. p-GaN-i-GaN/AlGaN multiple-quantum well n-AlGaN back-illuminated ultraviolet detectors. J. Electronic Materials, 2003; 32(5): 307-311. https://doi:10.1007/s11664-003-0149-4.
Google Scholar
4
-
Tut T, Gokkavas M, Inal A, Ozbay E. AlxGa1−xN based avalanche photodiodes with high reproducible avalanche gain. Appl. Phys. Lett, 2007; 90(16): 163506. https://doi.org/10.1063/1.2724926.
Google Scholar
5
-
Adivarahan V, Fareed Q, Srivastava S, Katona T, Gaevski M, Khan A. Robust 285 nm Deep UV Light Emitting Diodes over Metal Organic Hydride Vapor Phase Epitaxially Grown AlN/Sapphire Templates. Jpn. J. Appl. Phys, 2007; 46(23): 537-539. https://doi:10.1143/JJAP.46.L537.
Google Scholar
6
-
Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Materials, 2004; 3(9): 601-605. https://doi:10.1038/nmat1198.
Google Scholar
7
-
Kuzmík J. Power Electronics on InAlN/(In)GaN: Prospect for a record performance, IEEE Electron Device Lett. 2001; 22(11): 510. https://doi.org/10.1109/55.962646.
Google Scholar
8
-
Bai J, Wang T and Sakai S Study of the strain relaxation in InGaN/GaN multiple quantum well structures. J. Appl. Phys, 2001; 90(4): 1740. https://doi:10.1063/1.1389330.
Google Scholar
9
-
Narukawa Y, Kawakami Y, Fujita S, Fujita S. Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells. Phys. Rev. B, 1997; 55(4): 1938. https://doi:10.1103/physrevb.55.r1938.
Google Scholar
10
-
Chichibu S, Azuhata T, Sota T, Nakamura S. Luminescences from localized states in InGaN epilayers. Appl. Phys. Lett., 1997; 70(21): 2822. https://doi:10.1063/1.119013.
Google Scholar
11
-
Lin YS, Ma KJ, Hsu C, Feng SW, Cheng YC, Liao CC, Yang CC, Chou CC, Lee CM, Chyi JI. Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells. Appl. Phys. Lett, 2000; 77(19): 2988. https://doi:10.1063/1.1323542.
Google Scholar
12
-
Sheremet V, Gheshlaghi N, Sözen M, Elçi M, Sheremet N, Aydınlı A, Altuntaş I, Ding K, Avrutin V, Özgür Ü, Morkoç H. InGaN stress compensation layers in InGaN/GaN blue LEDs with step graded electron injectors. Superlattices and Microstructures, 2018; 116. https://doi.org/10.1016/j.spmi.2018.02.002.
Google Scholar
13
-
Taliercio T, Lefebvre P, Gallart M, Morel A. Optical properties of group-III nitride quantum wells and quantum boxes. Journal of Physics: Condensed Matter, 2001; 13(32): 7027-7042. https://doi:10.1088/0953-8984/13/32/310.
Google Scholar
14
-
Cho Y-H, Gainer GH, Fischer AJ, Song JJ, Keller S, Mishra UK, DenBaars SP. “S shaped” temperature dependent emission shift and carrier dynamics in InGaN/GaN multiple kuantum wells. Appl. Phys. Lett, 1998;73:1370. https://doi:10.1063/1.122164.
Google Scholar
15
-
Eliseev PG, Perlin P, Lee J, Osinski M. “Blue” temperature-induced shift and band-tail emission in InGaN-based light sources. Appl. Phys. Lett, 1997; 71: 569. https://doi.org/10.1063/1.119797.
Google Scholar
16
-
Teo KL, Colton JS, Yu PY, Weber ER, Li MF, et al. An analysis of temperature dependent photoluminescence line shapes in InGaN. Appl. Phys. Lett, 1998; 73(12): 1697. https://doi.org/10.1063/1.122249.
Google Scholar
17
-
Wang T, Bai J, Sakai S, Ho JK. Investigation of the emission mechanism in InGaN/GaN-based light-emitting diodes. Appl. Phys. Lett, 2001; 78(18): 2617. https://doi:10.1063/1.1368374.
Google Scholar
18
-
Kanemitsu Y, Tomita K, Hirano D, Inouye H. Temperature dependence of exciton localization dynamics in InxGa1−xN epitaxial films. Appl. Phys. Lett. 2006; 88: 121113. https://doi.org/10.1063/1.2187954.
Google Scholar
19
-
Huang YH, Cheng CL, Chen TT, Chen YF. Tsen KT. Studies of Stokes shift in Inx Ga1-xN alloys. J. Appl. Phys, 2007; 101(10): 103521. https://doi.org/10.1063/1.2724797.
Google Scholar
20
-
Sasaki C, Naito H, Iwata M, Kudo H, Yamada Y, Taguchi T, Jyouichi T, Okagawa H, Tadatomo K, Tanaka H. Temperature dependence of Stokes shift in InGaN epitaxial layers. J. Appl. Phys, 2003; 93: 1642. https://doi.org/10.1063/1.1533093.
Google Scholar
21
-
Riblet P, Hirayama H, Kinoshita A, Hirata A, Sugano T, Aoyagi Y. Determination of photoluminescence mechanism in InGaN quantum wells. Appl. Phys. Lett, 1999; 75: 2241. https://doi.org/10.1063/1.124977.
Google Scholar
22
-
Bell A, Christen J, Bertram F, Ponce FA, Marui H, Tanaka S. Localization versus field effects in single InGaN quantum wells. Appl. Phys. Lett, 2004; 84: 58. https://doi.org/10.1063/1.1638880.
Google Scholar
23
-
Can N, Okur S, Monavarian M, Zhang F, Avrutin V, Morkoç H, Teke A, Özgür Ü. Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients. Proc. of SPIE, 2015; 9363: 93632U. https://doi: 10.1117/12.2179637.
Google Scholar
24
-
Arslan E, Özturk MK, Teke A, Özcelik S, Özbay E. Buffer optimization for crack-free GaN epitaxial layers grown on Si (111) substrate by MOCV. J. Phys. D: Appl. Phys, 2008; 41: 258. https://doi:10.1088/0022-3727/41/15/155317.
Google Scholar
25
-
Park J-Y, Lee J-H, Jung S, Ji T. InGaN/GaN-based green-light-emitting diodes with an inserted InGaN/GaN-graded superlattice layer. Phys. Status Solidi A, 2016; 213: 1610–1614. https://doi: 10.1002/pssa.201533092.
Google Scholar
26
-
Gotz W, Johnson NM, Chen C, Liu H, Kuo C, Imler W. Activation energies of Si donors in GaN. Appl. Phys. Lett, 1996; 68: 3144. https://doi.org/10.1063/1.115805.
Google Scholar
27
Most read articles by the same author(s)
-
Remziye Tülek,
Sibel Gökden,
Ali Teke,
Engin Arslan,
Ekmel Özbay,
Predominant Scattering Mechanisms in Quaternary AlInGaN/GaN Heterostructures , European Journal of Applied Physics: Vol. 4 No. 6 (2022)