Solar Gravitational Radiation Reflected on the Hydrogen Wall might explain the Pioneer Anomaly: Do Mirrors for Gravitational Radiation Exist?
##plugins.themes.bootstrap3.article.main##
The Hydrogen wall found in the Voyager 1 data was modeled as the spherical mirror reflecting the Solar gravitational radiation back to the Solar System. A similar proposal appeared in the forgotten publication of Jaumann in 1912. The formula describing the anomalous acceleration of Pioneer 10 and 11 towards the Sun was derived. The decreasing temperature in the Solar System decreases slightly the mass of both Pioneers 10 and 11 as it was predicted by Einstein in 1907. The experimental value for both Pioneers was published as ap = (8.74 ± 1.33) * 10-10 ms-2. This new model predicts the value of the anomalous acceleration towards the Sun as ap = (8.50 – 0.0106 * x) * 10-10 ms-2 AU-1 where x is the distance of Pioneers from the Sun in astronomical unit AU. The annual amplitude visible in the Pioneer data (~ 1.6 *10-10 ms-2) was interpreted as the reflection of the Earth´s gravitational radiation from the surface of the Sun – the Earth´s self-gravitational effect with the predicted value 1.49 * 10-10 ms-2. The diurnal amplitude visible in the Pioneer anomaly (~ 3 * 10-12 ms-2) was interpreted as the result of Newton´s third law – for every action, there is an equal and opposite reaction between the Sun and the Earth: the diurnal amplitude was derived as 3.05 * 10-12 ms-2. It will be very helpful to get more experimental data from the next missions towards the Termination shock, the Hydrogen wall using the spacecraft of the type Voyager and Pioneer.
References
-
Anderson JD, Laing PA, Lau EL, Liu AS, Nieto MM, Turyshev SG. Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration. Phys. Rev. Lett., 1998; 81: 2858-2861.
Google Scholar
1
-
Anderson JD, Laing PA, Lau EL, Liu AS, Nieto MM, Turyshev SG. Study of the anomalous acceleration of Pioneer 10 and 11. Phys. Rev. D. 2002; 65(8): 082004.
Google Scholar
2
-
Anderson JD, Laing PA, Lau EL, Nieto MM, Turyshev SG. The search for a standard explanation of the Pioneer anomaly. Mod. Phys. Lett. A. 2002; 17: 875-886.
Google Scholar
3
-
Anderson JD, Laing PA, Lau EL, Lin AS, Nieto MM, Turyshev SG. Study of the anomalous acceleration of Pioneer 10 and 11. 2004; Arxiv: gr-qc/0104064v5. Last access December 04 2022.
Google Scholar
4
-
Nieto MM, Turyshev SG.Finding the origin of the Pioneer anomaly. Class. Quantum Grav. 2004; 21: 4005-4023.
Google Scholar
5
-
Nieto MM, Anderson JD. Using early data to illuminate the Pioneer anomaly. Class. Quantum Grav. 2005; 22: 5343-5354.
Google Scholar
6
-
Turyshev SG, Nieto MM, Anderson JD. Study of the Pioneer anomaly: a problem set. Am. J. Phys. 2005; 73: 1033-1044.
Google Scholar
7
-
Turyshev SG, Toth VT, Kellogg LR, Lau EL, Lee KJ. The study of the Pioneer anomaly: new data and objectives for new investigation. Int. J. Mod. Phys. D. 2006; 15: 1-56.
Google Scholar
8
-
Turyshev SG, Nieto MM, Anderson JD. Lessons learned from the Pioneers 10/11 for a mission to test the Pioneer anomaly. Adv. Space Res. 2007; 39: 291-296.
Google Scholar
9
-
Nieto MM, Anderson JD. Search for a solution of the Pioneer anomaly. Contemp. Physics. 2007; 48: 41-54.
Google Scholar
10
-
Nieto MM. New Horizons and the onset of the Pioneer anomaly. Phys. Lett. B. 2008; 659: 483-485.
Google Scholar
11
-
Turyshev SG, Toth VT. The Pioneer anomaly. 2010; Arxiv: 1001.3686v2. Last access December 04, 2022
Google Scholar
12
-
Milgrom M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983; 270, 365-370.
Google Scholar
13
-
Foot R, Volkas RR. A mirror world explanation for the Pioneer spacecraft anomalies? Phys. Lett. B. 2001; 517: 13-17.
Google Scholar
14
-
Ostwang D. An explanation of the Pioneer effect based on quasi-metric relativity. Class. Quantum Grav. 2002; 19: 4131-4140.
Google Scholar
15
-
Rañada AF. The Pioneer riddle, the quantum vacuum and variation of the light velocity. Europhys. Lett. 2003; 63: 653-659.
Google Scholar
16
-
Mbelek JP. General relativity and quintessence explain the Pioneer anomaly. 2004; Arxiv: gr-qc/0407023.
Google Scholar
17
-
Moffat JW. Modified gravitational theory and the Pioneer 10 and 11 spacecraft anomalous acceleration. 2004; Arxiv: gr-qc/0405076. Last access December 04, 2022.
Google Scholar
18
-
Nieto MM, Turyshev SG, Anderson JD. Directly measured limit on the interplanetary matter density from Pioneer 10 and 11. Physics Lett. B. 2005; 613: 11-19.
Google Scholar
19
-
Jaekel MT, Reynaud S. Gravity tests in the Solar System and the Pioneer anomaly. Mod. Phys. Lett. A. 2005; 20: 1047-1055.
Google Scholar
20
-
Rañada AF. The Pioneer anomaly as acceleration of the clocks. Found. Phys. 2005; 34:1955-1971.
Google Scholar
21
-
De Diego JA, Núñez D, Zaval J. Pioneer anomaly? Gravitational pull due to the Kuiper belt. Int. J. Mod. Phys. D. 2006; 15: 533-544.
Google Scholar
22
-
Iorio L, Giuduce G. What do the orbital motions of the outer planets of the Solar System tell us about the Pioneer anomaly? New Astronomy. 2006; 11: 600-607.
Google Scholar
23
-
Page GL, Dixon DS, Wallin JF. Can minor planets be used to assess gravity in the outer Solar System? Astrophys. J. 2006; 642: 606-614.
Google Scholar
24
-
Bertolami O, Vieira P. Pioneer anomaly and the Kuiper belt mass distribution. 2006; Arxiv: astro-ph/0506330v3. Last access December 04, 2022.
Google Scholar
25
-
Reynaud S, Jaekel MT. Tests of general relativity in the Solar System. 2008; Arxiv: 0801.3407v1. Last access December 04, 2022.
Google Scholar
26
-
Tangen K. Could the Pioneer anomaly have a gravitational origin? Phys. Rev. D. 2007; 76: 042005.
Google Scholar
27
-
Iorio L. Can the Pioneer anomaly be of gravitational origin? A phenomenological answer. 2007; Arxiv: gr-qc/0610050v10. Last access December 04, 2022.
Google Scholar
28
-
Lachièze-Rez M. Cosmology in the Solar System: The Pioneer effect is not cosmological. Class. Quantum Grav. 2007; 24: 2735-2741.
Google Scholar
29
-
McCulloch ME. Modeling the Pioneer anomaly as modified inertia. Mon. Not. R. Astron. Soc. 2007; 376: 338-342.
Google Scholar
30
-
Oliveira FJ. Is the Pioneer anomaly a counter example to the dark matter hypothesis? 2007; Arxiv: gr-qc/0610029. Last access December 2022.
Google Scholar
31
-
Olsen Ø. The constancy of the Pioneer anomalous acceleration. Astron. Astrophys. 2007; 463: 393-397.
Google Scholar
32
-
Lämmerzahl C. The Pioneer anomaly or do we really understand the physics within the Solar System? 2008. https://www.zarm.uni-bremen.de/fileadmin/images/laemmerzahlDatei/Pioneer_Utrecht.pdf
Google Scholar
33
-
Siutsou IA, Tomilchik LM. On the gravitational origin of the Pioneer anomaly. 2008, Arxiv: 0908.1644v1. Last access December 04, 2022.
Google Scholar
34
-
Turyshev SG, Toth VT, Kinsella G, Lee SC, Lok S, Ellis J. Support for the thermal origin of the Pioneer anomaly. 2012; Arxiv: gr-qc/1204.2507v1. Last access December 04, 2022.
Google Scholar
35
-
Anderson JD, Morris JR. Brans-Dicke theory and the Pioneer anomaly. Phys. Rev. D. 2012; 86(6): 064023.
Google Scholar
36
-
Anderson JD, Morris JR. Chameleon effect and the Pioneer anomaly. Phys. Rev. D. 2012; 85(8): 084017.
Google Scholar
37
-
Gillies GT. The Newtonian gravitational constant: recent measurements and related studies. Rep. Prog. Phys. 1997; 60: 151-225.
Google Scholar
38
-
Gordin MD. Einstein in Bohemia. 2020; Princeton University Press, ISBN-10: 0691177376. pages: 25, 26, 39-42, 43, 74-75, 186, 225, 253.
Google Scholar
39
-
Těšínská E. Albert Einstein and Gustav Jaumann on the balance (Negotiations for the professorship of theoretical physics at the German University in Prague in 1910-1911. In Proceedings of the International Conference Cosmology on small scales 2022, Dark energy and the local Hubble expansion problem. Eds. Křížek M and Dumin YV., Prague, September 21-24, 2022: 145-168. https://css2022.math.cas.cz/proceedingsCSS2022.pdf.
Google Scholar
40
-
Einstein A. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. (Lepzig). 1916; 49: 769-822.
Google Scholar
41
-
Jaumann G. Theorie der Gravitation. Sitzungsberichte der Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse. Abt. IIa, 1912; 121: 95-182.
Google Scholar
42
-
Katushkina OA, Quémerais E, Izmodenov VV, Lallement R, Sandel BR. Voyager 1/UVS Lyman α measurements at the distant Heliosphere (90 – 130): unknown source of additional emission. Journal of Geophysical Research: Space Physics. 2017; 122: 10,921-10,937.
Google Scholar
43
-
Minter SJ, Wegter-McNelly K, Chiao RY. Do mirrors for gravitational waves exist? Physica E: Low-dimensional systems and nanostructures. 2010; 42(3): 234-255.
Google Scholar
44
-
Spherical cap. Wikipedia. Accessed December 02, 2022. https://en.wikipedia.org/wiki/Spherical_cap.
Google Scholar
45
-
Einstein A. Relativitätsprinzip und die aus denselben gezogenen Folgerungen. Jahrbuch der Radioaktivität und Elektronik. 1907; 4: 411-462.
Google Scholar
46
-
Assis AKT, Clemente RA. The influence of temperature on gravitation. Il Nuovo Cimento Note Brevi. 1993; (108B): 713-716.
Google Scholar
47
-
Martins RA. Experimental studies on mass and gravitation in the early twentieth century: the search for non-Newtonian effects. 2021; In Studies in History and Philosophy of Science, Quamcumque Editum. ISBN-10: 6599689019. pages 77-104. https://www.amazon.com/dp/6599689019.
Google Scholar
48
-
Martins RA. The search for an influence of temperature on gravitation. 2021; In Studies in History and Philosophy of Science, Quamcumque Editum. ISBN-10: 6599689019. pages 105-136. https://www.amazon.com/dp/6599689019.
Google Scholar
49
-
Thomson B. (Count Rumford). An inquiry concerning the weight ascribed to heat. Philosophical Transactions of the Royal Society of London. 1799; 89: 179-194.
Google Scholar
50
-
Poynting JH, Phillips P. An experiment with the balance to find if change of temperature has any effect upon weight. Proceedings of the Royal Society of London. 1905; (A 76): 445-457.
Google Scholar
51
-
Southerns L. Experimental investigation as to dependence of gravity on temperature. Proceedings of the Royal Society of London 1907; (A 78): 392-403.
Google Scholar
52
-
Pettersson H. Experiments with a new micro-balance. Proceedings of the Physical Society of London. 1919; 32: 209.
Google Scholar
53
-
Shaw PE, Davy N. The effect of temperature on gravitative attraction. Physical Review. 1923; 21: 680-691.
Google Scholar
54
-
Tajmar M, Plesescu F, Seifert B. Measuring the dependence of weight on temperature in the low-temperature regime using a magnetic suspension balance. Meas. Sci. Technol. 2010; 21: 015111.
Google Scholar
55
-
Tajmar M, Hentsch G, Hutsch T. Testing the influence of temperature on mass at high temperatures. Measurements. 2020; 172: 108917.
Google Scholar
56
-
Stávek J. Solar radiant heat reflected on the Termination shock might create excess microwave radiation in the horn antenna (Thermal telescope). European Journal of Applied Physics. 2022; 4(3) 38-42.
Google Scholar
57
-
Anderson JD, Laing PA, Lau EL, Liu AS, Nieto MM, Turyshev SG. Study of the anomalous acceleration of Pioneer 10 and 11. Phys. Rev. D. 2002; 65: 082004.
Google Scholar
58
-
Ghosh A. On the annual and diurnal variations of the anomalous acceleration of Pioneer 10. Apeiron. 2007; 14: 288-299.
Google Scholar
59
-
ten Boom PG. Reinterpreting the Pioneer anomaly and its annual residuals. 2008; Arxiv: gr-qc/0505077v2. Last access December 04, 2022.
Google Scholar
60
-
Levy A, Christophe B, Bério P, Métris G, Courty JM, Reynaud S. Pioneer Doppler data analysis: study of periodic anomalies. Adv. Space Res. 2009; 43: 1538-1544.
Google Scholar
61
-
Bilbao L, Bernal L. Minotti F. Vibrating Rays Theory. 2014; Arxiv: 1407.5001v12. Last access December 2022.
Google Scholar
62
-
Greaves ED, Bracho C, Gift S, Rodriguez AM. A solution to the Pioneer anomalous annual and diurnal residuals. Progress in Physics. 2021; 17(2): 168-184.
Google Scholar
63
-
Ignat´ev YG, Zakharov AV. The reflection of gravitational waves from compact stars. Physics Letters A. 1978; 66(1): 3-4.
Google Scholar
64
Most read articles by the same author(s)
-
Jiří Stávek,
ChatGPT on the Einstein-Podolsky-Rosen Paradox , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
ChatGPT on the Gravitational Redshift , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
The Newtonian Gravitational Constant G Interpreted as the Gravitational Inertia of Vacuum - G0. How to Arrange Twelve Precise Experimental Determinations of GZ in their Spread 500 ppm? , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
ChatGPT on the Cosmological Redshift and the Hubble Constant , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
ChatGPT on the Mathematical Language in Physics , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
Spin Interpreted as the Angular Momentum Curvature, Electron g-factor Interpreted as the Ratio of Toroidal Torsion and Curvature, Unlocking of the Fixed Planck Constant h – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 1 (2021) -
Jiří Stávek,
A New Interpretation of Contributions Presented at the Solvay Conference 1911. Can We Falsify the “Geocentric” Foundations of Quantum Mechanics in the Solar System? , European Journal of Applied Physics: Vol. 3 No. 6 (2021) -
Jiří Stávek,
The Rydberg Constant Interpreted as the Gaussian Curvature, Gauss-Bohr-de Broglie Model – Two Shadow Projections of the Helix, Unlocking of the Fixed Constant c of the Speed of Light – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
A New Interpretation of the Physical Color Theory Based on the Descartes´ Rotation Energy of Visible, Ultraviolet and Infrared Photons , European Journal of Applied Physics: Vol. 5 No. 5 (2023) -
Jiří Stávek,
How to Relieve the Hubble Constant Tension? (Earth´s Gravitational Redshift + Earth´s Diurnal Aberration) , European Journal of Applied Physics: Vol. 4 No. 2 (2022)