##plugins.themes.bootstrap3.article.main##

The fractions in dispersive of the volume and surface absorption potential integral to the total real volume potential integral, were evaluated numerically for neutron-nucleus interaction. The dispersive fraction values have been adopted in modifying the accuracy of the optical potential of the reaction, which in turn improved the calculated cross-section for neutron-nucleus interaction in accordance with published experimental measurements. The use of dispersive fraction to the potential integral was applied for the (n+99Tc) reaction and the calculated cross-sections were compared with published works in neutron energy 30MeV.

References

  1. Dickhoff W, Charity R. Recent developments for the optical model of nuclei. Progress in Particle and Nuclear Physics, 2019;105:252–299. https://doi.org/10.1016/j.ppnp.2018.11.002.
     Google Scholar
  2. Jasim MH, Idress MT. Pre-equilibrium and Equilibrium energy emission spectrum of nucleons and light nuclei induced nuclear reactions on 63Cu nuclei. Iraqi Journal of Science, 2016; 57(2A): 910-917.
     Google Scholar
  3. Perey FG. Optical-Model Analysis of Proton Elastic Scattering in the Range of 9 to 22 MeV. Physical Review, 1963; 131(2).
     Google Scholar
  4. Avrigeanu V, Avrigeanu M, Mănăilescu C. Further explorations of theα-particle optical model potential at low energies for the mass rangeA≈45–209. Physical Review C, 2014; 90(4). https://doi.org/10.1103/physrevc.90.044612.
     Google Scholar
  5. Smith AB. The Neutron Spherical Optical Model Absorption. Annals of Nuclear Energy, 2008; 35(5): 890–903. https://doi.org/10.1016/j.anucene.2007.09.004.
     Google Scholar
  6. Lopez-Morana J, Vinas X. Nucleon-Nucleus optical potential computed with Gogny interaction. Journal of Physics G: Nuclear and Particle Physics, 2021; 48(3). https://doi.org/10.1088/1361-6471/abcdf8.
     Google Scholar
  7. Molina A, Capote R, Quesada JM, Lozano M. Dispersive spherical optical model of neutron scattering from27Alup to 250 MeV. Physical Review C, 2002; 65(3). https://doi.org/10.1103/physrevc.65.034616.
     Google Scholar
  8. Wakabayashi T, Takahashi M, Chiba S, Takaki N, Tachi Y. A fast reactor transmutation system for 6 LLFP nuclides. Nuclear Engineering and Design, 2020; 363: 110667. https://doi.org/10.1016/j.nucengdes.2020.110667.
     Google Scholar
  9. Macklin RL, Technetium-99 Neutron Capture Cross Section. Nuclear Science and Engineering, 1982;81:520-524. https://doi.org/10.13182/NSE82-A21441.
     Google Scholar
  10. Zerkin VV, Pritychenko B. Extended Computer database and WEB retrieval system, Nuclear Instruments and Methods in physics research section A: accelerators, spectrometers, detectors and associated equipment. The experimental nuclear reaction data (EXFOR), 2018; 888: 31-43.
     Google Scholar
  11. Abd Ali FF, Jasim MH. The Real and Imaginary Volume Integrals in Spherical-Statistical Optical Potential of Neutron Scattering from 56Fe nuclei. Iraqi Journal of Science, 2018; 59(4C): 221-2216. https://DOI:10.24996/ijs.2018.59.4C7.
     Google Scholar
  12. Watson BA, Singh PP, Segel RE. Optical Model Analysis of Neutron Scattering from 1P Shell Nuclei between 10 and 50 MeV. Phys. Rev., 1969; 182(4): 977-989.
     Google Scholar
  13. Pascolini A, Villi C. The nuclear Thomas-Fermi model and the optical potential for single-channel reactions. Il Nuovo Cimento A, 1985; 85(2): 89–174. https://doi.org/10.1007/bf02902407.
     Google Scholar
  14. Koning AJ, Delaroche JP. Local and global nucleon optical models from 1 keV to 200 MeV. Nuclear Physics A, 2003; 713: 231–310. https://doi.org/10.1016/S0375-9474(02)01321-0.
     Google Scholar
  15. Avrigeanu V, Hodgson PE, Avrigeanu M. Global optical potentials for emitted alpha particles. Physical Review C, 1994; 49(4): 2136–2141. https://doi.org/10.1103/physrevc.49.2136.
     Google Scholar
  16. Morillon B, Romain P. Dispersive and global spherical optical model with a local energy approximation for the scattering of neutrons by nuclei from 1keV to 200MeV. Physical Review C, 2004; 70(1). https://doi.org/10.1103/physrevc.70.014601.
     Google Scholar
  17. Mahaux C, Ngô H, Satchler G. 1986’ Causality and the Threshold Anomaly of the Nucleus-Nucleus Potential. Nuclear Physics A, 2004; 449(2): 354-394. https://doi.org/10.1016/0375-9474(86)90009-6.
     Google Scholar
  18. Hodgson PE. The Nucleon Optical Model. Publisher: World Scientific; 1994.
     Google Scholar
  19. Quesada JM, Capote R, Molina A, Lozano M. A Dispersion Relations in the Nuclear Optical Model. Computer Physics Communications, 2003; 153: 97-105.
     Google Scholar
  20. Lawson RD, Smith AB. Dispersion contribution to neutron reactions, Report ANL/NDM -152. Argonne National Laboratory, Argonne, Illinois, USA; 2001.
     Google Scholar
  21. Soukhovitskii ES, Capote R, Quesada JM, Chiba S. Dispersive coupled-channel analysis of nucleon scattering from Th232 up to 200 MeV. Physical Review C, 2005; 72(2). https://doi.org/10.1103/physrevc.72.024604.
     Google Scholar
  22. Capote R, Molina A, Quesada JM. A general numerical solution of dispersion relations for the nuclear optical model. Journal of Physics G: Nuclear and Particle Physics, 2001; 27(8): B15–B19. https://doi.org/10.1088/0954-3899/27/8/402.
     Google Scholar
  23. Lawson RD, Guenther PT, Smith AB. Energy dependence of the optical-model potential for fast-neutron scattering from bismuth. Physical Review C,1987; 36(4): 1298-1311.
     Google Scholar
  24. Jeukenne JP, Lejeune A, Mahaux C. Optical-model potential in finite nuclei from Reid’s hard core interaction, Phys. Rev. C, 1977; 17: 80.
     Google Scholar
  25. Feshbach H. The Optical Model and Its Justification. Annual Review of Nuclear Science, 1958; 8: 49-104. https://doi.org/10.1146/annurev.ns.08.120158.000405.
     Google Scholar
  26. Hodgson PE. Nuclear Reactions and Nuclear Structure. Clarendon Press, OXFORD, UK; 1971.
     Google Scholar
  27. Lawson RD, Smith AB. A neutron spherical Optical-Statistical Model Code: A user manual, ANL/NDM-145. Argonne National Laboratory, USA; 1999.
     Google Scholar