##plugins.themes.bootstrap3.article.main##

Scattering mechanisms that limit the mobility of two-dimensional electron gas (2DEG) in AlInGaN/GaN heterojunctions with three different barrier layer thicknesses of 37.2 (sample A), 10.6 (sample B) and 4.30 (sample C) nm were studied. Hall measurements were performed between 12 and 350 K. Mobilities limited by scattering due to acoustic and optic phonons, dislocation, interface roughness, and alloy disorder were used in the calculation. It was found that scattering, predominantly due to interface roughness, determine the Hall mobility for all samples at different strengths. The highest electron mobility of 492 cm2V-1s-1 at room temperature is obtained for sample B with a high sheet density of about 4.43 x 1013 cm-2 and a corresponding sheet resistance of 287 Ω.

References

  1. Morkoç H. Handbook of Nitride Semiconductors and Devices. vols I–III (New York: Wiley) 2008.
     Google Scholar
  2. Xie J, Leach J H, Ni X, Wu M, Shimada R, Özgür Ü, Morkoç H. Electron mobility in InGaN channel heterostructure field effect transistor structure with different barriers. Appl. Phys. Lett, 2007; 91:262102. https://doi.org/10.1063/1.2824461.
     Google Scholar
  3. Miyoshi M, Egawa T, Ishikawa H, Asai K-I, Shibata T, Tanaka M and Oda O. Nanostructural characterization and two dimensional electron-gas properties in high-mobility AlGaN/AlN/GaN heterostructures grown on epitaxial AlN/sapphire templates. J. Appl. Phys, 2005;98:063713. https://doi.org/10.1063/1.2060946.
     Google Scholar
  4. Xie J, Ni X, Wu M, Leach JH, Özgür Ü, Morkoç H. High electron mobility in nearly lattice-matched AlInN/AlN/GaN heterostructure field effect transistors. Appl. Phys. Lett, 2007;91:132116. https://doi.org/10.1063/1.2794419.
     Google Scholar
  5. Berdalovic I, Poljak M, Suligoj T. A comprehensive model and numerical analysis of electron mobility in GaN-based high electron mobility transistors. J. Appl. Phys, 2021;129: 064303. https://doi.org/10.1063/5.0037228.
     Google Scholar
  6. Lisesivdin SB, Acar S, Kasap M, Ozcelik S, Gokden S, Ozbay E. Scattering analysis of 2DEG carrier extracted by QMSA in undoped Al0.25Ga0.75N/GaN heterostructures. Semicond. Sci. Technol, 2007;22:543. https://doi.org.10.1088/0268-1242/22/5/015.
     Google Scholar
  7. Smorchkova, IP, Chen L, Mates T, Shen L, Heikman, S, Moran B, Keller S, et al. AlN/GaN and (Al,Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy. Journal of Appl. Phys, 2001;90:5196. https://doi.org/10.1063/1.1412273.
     Google Scholar
  8. Jeganathan K, Ide T, Shimizu M, Okumura H. Two-dimensional electron gases induced by polarization charges in AlN/GaN heterostructure grown by plasma-assisted molecular-beam epitaxy. Journal of Appl. Phys, 2003;94: 3260, https://doi.org/10.1063/1.1599979.
     Google Scholar
  9. Miyoshi M, Egawa T, Ishikawa H. Study on mobility enhancement in MOVPE-grown AlGaN/AlN/GaN HEMT structures using a thin AlN interfacial layer. Solid-State Electronics, 2006;50:1515. https://doi.org/10.1016/j.sse.2006.07.016.
     Google Scholar
  10. Cao Y, Jena D. High-mobility window for two-dimensional electron gases at ultrathin AlN/GaN heterojunctions. Appl. Phys. Lett, 2007;90:182112. https://doi.org/10.1063/1.2736207.
     Google Scholar
  11. Kuzmík J. Power Electronics on InAlN/(In)GaN: Prospect for a record performance. IEEE Electron Device Lett. 2001;22:510. https://doi.org/10.1109/55.962646.
     Google Scholar
  12. Kuzmík J. InAlN/(In)GaN high electron mobility transistors: some aspects of the quantum well heterostructure proposal. Semicond. Sci. Technol, 2002;17:540, https://doi.org/10.1088/0268-1242/17/6/307.
     Google Scholar
  13. Katzer DS, Storm DF, Binari SC, Shanabrook BV, Torabi A, Zhou L, Smith DJ. Molecular beam epitaxy of InAlN/GaN heterostructures for high electron mobility transistors. J. Vac. Sci. Technol. B, 2005;23:1204. https://doi.org/10.1116/1.1927103.
     Google Scholar
  14. Gonschorek M, Carlin J-F, Feltin E, Py MA, ve Grandjean N. High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures. Appl. Phys. Lett, 2006; 89: 062106. https://doi.org/10.1063/1.2335390.
     Google Scholar
  15. Tulek R, Ilgaz A, Gokden S, Teke A, Ozturk MK, Kasap M, et al. Comparison of the transport properties of high quality AlGaN/AlN/GaN and AlInN/AlN/GaN two-dimensional electron gas heterostructures. J. Appl. Phys, 2009;105:013707. https://doi.org/10.1063/1.2996281.
     Google Scholar
  16. Teke A, Gökden S, Tülek R, Leach JH, Fan Q, Xie J, et al. The effect of AlN interlayer thicknesses on scattering processes in lattice-matched AlInN/GaN two-dimensional electron gas heterostructures. New Journal of Physics, 2009;11: 063031. https://doi.org/10.1088/1367-2630/11/6/063031.
     Google Scholar
  17. Xie J, Ni X, Wu M, Leach JH, Özgür Ü, Morkoç H. High electron mobility in nearly lattice-matched AlInN/AlN/GaN heterostructure field effect transistors. Appl. Phys. Lett, 2007; 91:132116. https://doi.org/10.1063/1.2794419.
     Google Scholar
  18. Gökden S, Tülek R, Teke A, Leach JH, Fan Q, Xie J, et al. Mobility limiting scattering mechanisms in nitride-based two-dimensional heterostructures with InGaN channel, Semicond. Sci. Technol, 2010;25:045024. https://doi.org/10.1088/0268-1242/25/4/045024.
     Google Scholar
  19. Xie J, Leach JH, Ni X, Wu M, Shimada R, Özgür Ü, Morkoç H. Electron mobility in In GaN channel heterostructure field effect transistor structures with different barriers. Appl. Phys. Lett, 2007;91:262102. https://doi.org/10.1063/1.2824461.
     Google Scholar
  20. Okamoto N, Hoshino K, Hara N, Takikawa M, Arakawa Y. MOCVD-grown InGaN-channel HEMT structures with electron mobility of over 1000 cm2/V.s. Journal of Crystal Growth, 2004; 272:278. https://doi.org/10.1016/j.jcrysgro.2004.08.071.
     Google Scholar
  21. Tülek R, Arslan E, Bayraklı A, Turhan S, Gökden S, Duygulu Ö, Kaya AA. et al. The effect of GaN thickness inserted between two AlN layers on the transport properties of a lattice matched AlInN/AlN/GaN/AlN/GaN double channel heterostructure. Thin Solid Films, 2014;551:146. https://doi.org/10.1016/J.TSF.2013.11.114.
     Google Scholar
  22. Zhang S, Li MC, Feng ZH, Liu B, Yin JY, Zhao C. High electron mobility, and low sheet resistance in lattice-matched AlInN/AlN/GaN/AlN/GaN double-channel heterostructure. Appl. Phys. Lett, 2009;95:212101. https://doi.org/10.1063/1.3264961.
     Google Scholar
  23. Zhang S, Yin J Y, Feng Z H, Li M C, Wanga J Z, and Zhaoa L C. Highly uniform sheet resistance of the double-channel AlInN/GaN heterostructure. Superlattice. Microst, 2010;48:523. https://doi.org/10.1016/j.spmi.2010.09.004.
     Google Scholar
  24. Liu Y, Jiang H, Arulkumaran S, Egawa T, Zhang B, and Ishikawa H. Demonstration of undoped guaternary AlInGaN heterostructure field effect transistor on sapphire substrate. Applied Physics Letters, 2005;86:223510. https://doi.org/10.1063/1.1942643.
     Google Scholar
  25. Takamaya T, Yuri M, Itoh K, Baba T, Harris JS. Analysis of phase separation region in wurtzite group in nitride quaternary material system using modified valance force field model. J. Cryst. Growth, 2001;222:29. https://doi.org/10.1016/S0022-0248(00)00869-1.
     Google Scholar
  26. Hahn H, Reuters B, Wille A, Ketteniss N, Benkhelifa F, Ambacher O, Kalisch H, et al. First polarization-engineered compressively strained AlInGaN barrier enhancement-mode MISHFET. Semicond. Sci. Technol, 2012;27:055004. https://doi.org/10.1088/0268-1242/27/5/055004.
     Google Scholar
  27. Wang R, Li G, Verma J. 220-GHz Quaternary Barrier InAlGaN/GaN HEMTs. IEEE Electron Device Letters, 2011;32:1215. https://doi.org/10.1109/LED.2011.2158288.
     Google Scholar
  28. Lecourt F, Agboton A, Ketteniss N. Power Performance at 40 GHz Quaternary Barrier InAlGaN/GaN HEMT. IEEE Electron Device Letters, 2013;34:978. https://doi.org/10.1109/LED.2013.2266123.
     Google Scholar
  29. Wang R, Li G, Karbasian G. Quaternary Barrier InAlGaN/GaN HEMTs with ft/fmax 230/300 GHz. IEEE Electron Device Letters, 2013;34:378. https://doi.org/10.1109/LED.2013.2238503.
     Google Scholar
  30. Liu Y, Egawa T, Ishikawa H, Jimbo T. High quality quaternary AlInGaN epilayers on sapphire. Phys. Status Solidi A, 2003;200:36. https://doi.org/10.1002/pssa.200303469.
     Google Scholar
  31. Liu Y, Egawa T, and Jiang H. Enhancement-mode quaternary AlInGaN/GaN HEMT with non-recessed-gate on sapphire substrate. Electron. Lett, 2006;42:884. https://doi.org/10.1049/el:20061150.
     Google Scholar
  32. Li Y, Zhang J, Wan W, Zhang Y, and Nie Y. Alloy disorder scattering limited mobility of two-dimensional electron gas in the quaternary AlInGaN/GaN heterojunctions. Physica E, 2015;67:77. https://doi.org/10.1016/j.physe.2014.11.009.
     Google Scholar
  33. Zhang J, Yang X, Cheng J, Feng Y. Enhanced transport properties in InAlGaN/AlN/GaN heterostructures on Si (111) substrates: The role of interface quality. Applied Physics Letters, 2017;110:172101. https://doi.org/10.1063/1.4982597.
     Google Scholar
  34. Liu T, Jiao S, Wang D, Zhao L, Yang T, Xiao Z. Growth and characterization of quaternary AlInGAN multiple quantum wells with different Al composition. Applied Surface Science, 2014;301:178. https://doi.org/10.1016/j.apsusc.2014.02.034.
     Google Scholar
  35. Lee S-N, Paek HS, Kim H, Kim KK. Growth and characterization of AlInGAN protective layer to suppress the thermal damage of InGaN multiple quantum well. Journal of Crystal Growth, 2008;310:3881. https://doi.org/10.1016/j.jcrysgro.2008.05.056.
     Google Scholar
  36. Sonmez F, Arslan E, Ardali S, Tiras E, Ozbay E. Determination of scattering mechanisms in AlInGaN/GaN heterostructures grown on sapphire substrate. Journal of Alloys and Compounds, 2021;864:158895. https://doi.org/10.1016/j.jallcom.2021.158895.
     Google Scholar
  37. Lecourt F, Agboton A, Ketteniss N, Behmenburg H, Defrance N, Hoel V. et al. Power performance at 40 GHz on quaternary barrier InAlGaN/GaN HEMT. IEEE Electron Device Lett, 2013;34:978. https://doi.org/10.1109/LED.2013.2266123.
     Google Scholar
  38. Liu Y, Jiang H, Arulkumaran S, Egawa T, Zhang B, Ishikawa H. Demonstration of undoped quaternary AlInGaN∕GaN heterostructure field-effect transistor on sapphire substrate. Appl. Phys. Lett, 2005;86:223510. https://doi.org/10.1063/1.1942643.
     Google Scholar
  39. Arslan E, Ozturk M K, Teke A, Ozcelik S, and Ozbay E. Buffer optimization for crack- free GaN epitaxial layers grown on Si(1 1 1) substrate by MOCVD. J. Phys. D Appl. Phys, 2008;41:155317. https://doi.org/10.1088/0022-3727/41/15/155317.
     Google Scholar
  40. Lisesivdin SB, Yildiz A, Acar S, Kasap M, Ozcelik S, Ozbay E. Electronic transport characterization of AlGaN∕GaN heterostructures using quantitative mobility spectrum analysis. Appl. Phys. Lett, 2007;91:102113. https://doi.org/10.1063/1.2778453.
     Google Scholar
  41. Lisesivdin SB, Balkan N, Ozbay E. A simple parallel conduction extraction method (SPCEM) for MODFETs and undoped GaN-based HEMTs. Microelectronics Journal, 2009;40:413. https://doi.org/10.1016/j.mejo.2008.06.006.
     Google Scholar
  42. Gokden S, Baran R, Balkan N, Mazzucato S. The effect of interface roughness scattering on low field mobility of 2D electron gas in GaN/AlGaN heterostructure. Physica E, 2004;24:249. https://doi.org/10.1016/j.physe.2004.04.042.
     Google Scholar
  43. Gokden S, Ilgaz A, Balkan N, Mazzucato S. The effect of scattering mechanisms on the low field mobility in GaN/AlGaN heterostructures. Physica E, 2004;25:86. https://doi.org/10.1016/j.physe.2004.06.038.
     Google Scholar
  44. Ridley BK, Foutz BE, Eastman LF. Mobility of electrons in bulk GaN and AlxGa1−xN/GaN heterostructures. Phys. Rev. B, 2000;61:16862. https://doi.org/10.1103/PhysRevB.61.16862.
     Google Scholar
  45. Saha S, Kumar J. Role of interface roughness scattering, temperature, and structural parameters on the performance characteristics of III-nitride quantum cascade detectors. J. Appl. Phys, 2017;121:053104. https://doi.org/10.1063/1.4975481.
     Google Scholar
  46. Çörekçi S, Usanmaz D, Tekeli Z, Çakmak M, Özçelik S, Özbay E. Surface Morphology of AlGaN/Al2O3-High Electron Mobility Transistor Structure. J. Nanosci. Nanotechnol, 2008;8:640. https://doi.org/10.1166/jnn.2008.a181.
     Google Scholar
  47. Li Y, Zhang J, Liu G, Quan R, Duan X, Zhang J, and Hao Y. Theoretical analysis of the mobility of two-dimensional electron gas in the quaternary AlxInyGa1−x−yN/GaN heterojunctions limited by the alloy composition fluctuation. AIP Adv, 2017;7:105109. https://doi.org/10.1063/1.4985825.
     Google Scholar