Gravity Without Newton’s Gravitational Constant and No Knowledge of the Mass Size
##plugins.themes.bootstrap3.article.main##
In this paper, we show that the Schwarzschild radius can be extracted easily from any gravitationally-linked phenomena without having knowledge of Newton’s gravitational constant or the mass size of the gravitational object. Further, the Schwarzschild radius can be used to predict a long series of gravity phenomena accurately, again without knowledge of Newton’s gravitational constant and also without knowledge of the size of the mass, although this may seem surprising at first. Hidden within the Schwarzschild radius are the more fundamental mass of the gravitational object, the Planck length, which we will assert contain the secret essence related to gravity, in addition to the speed of light (the speed of gravity). This seems to support that gravity is quantized, even at the cosmological scale, and this quantization is directly linked to the Planck units. This also supports our view that Newton’s gravitational constant is a universal composite constant of the form G = l2pc3/h , rather than relying on the Planck units as a function of G. This does not mean that Newton’s gravitational constant is not a universal constant, but rather that it is a composite universal constant, which depends on the Planck length, the speed of light, and the Planck constant. This is, to our knowledge, the first paper1 that shows how a long series of major gravity predictions and measurements can be completed without any knowledge of the mass size of the object, or Newton’s gravitational constant. At minimum, we think it provides an interesting new angle for evaluating existing theories of gravitation.
References
-
Haug EG. Gravity without Newton’s gravitational constant and no knowledge of mass size. preprints.org, 2018. URL https://www.preprints.org/manuscript/201808.0220/v1.
Google Scholar
1
-
Lorentz HA. Simplified theory of electrical and optical phenomena in moving systems. Proc. Acad. Scientific, Amsterdam, 1899;1.
Google Scholar
2
-
Haug EG. A new full relativistic escape velocity and a new Hubble related equation for the universe. Physics Essays, 2021a;34(4):502. URL http://dx.doi.org/10.4006/0836-1398-34.4.502.
Google Scholar
3
-
Pound RV and Rebka Jr GA. Gravitational red-shift in nuclear resonance. Physical Review Letters, 19599;3(9):439–441. URL https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.3.439.
Google Scholar
4
-
Schwarzschild K. U¨ ber das gravitationsfeld eines massenpunktes nach der Einsteinschen theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik, 1916a, p. 189.
Google Scholar
5
-
Schwarzschild K. ¨uber das gravitationsfeld einer kugel aus inkompressibler flussigkeit nach der Einsteinschen theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik, 1916b, p. 424.
Google Scholar
6
-
Einstein A. N¨aherungsweise integration der feldgleichungen der gravitation. Sitzungsberichte der K¨oniglich Preussischen Akademie der Wissenschaften Berlin, 1916.
Google Scholar
7
-
Augousti AT and Radosz A. An observation on the congruence of the escape velocity in classical mechanics and general relativity in a Schwarzschild metric. European Journal of Physics, 2006;376:331–335. URL https://doi.org/10.1088/0143-0807/27/2/015.
Google Scholar
8
-
Michell J. On the means of discovering the distance, magnitude &c.of the fixed stars, in consequence of the diminution of the velocity of their light, in case such a diminution should be found to take place in any of them, and such other data should be procured from observations. Philosophical Transactions of the Royal Society, 1784;74. https://doi.org/10.1098/rstl.1784.0008.
Google Scholar
9
-
Haug EG. The gravitational constant and the Planck units. A simplification of the quantum realm. Physics Essays, 2016a;29(4):558. URL https://doi.org/10.4006/0836-1398-29.4.558.
Google Scholar
10
-
Haug EG. Planck quantization of Newton and Einstein gravitation for Planck masses and smaller size objects. 2016b www.viXra.org 1610.0328 2016.
Google Scholar
11
-
Planck M. Natuerliche Masseinheiten. Der K¨oniglich Preussischen Akademie Der Wissenschaften, 1899.
Google Scholar
12
-
Planck M. Vorlesungen ¨uber die Theorie der W¨armestrahlung. Leipzig: J.A. Barth, p. 163, see also the English translation “The Theory of Radiation” (1959) Dover, 1906.
Google Scholar
13
-
Cahill K. The gravitational constant. Lettere al Nuovo Cimento, 1984a;39:181.
Google Scholar
14
-
Cahill K. Tetrads, broken symmetries, and the gravitational constant. Zeitschrift F¨ur Physik C Particles and Fields, 1984b;23:353.
Google Scholar
15
-
McCulloch ME. Gravity from the uncertainty principle. Astrophysics and Space Science, 2014;34(2):957. URL https://doi.org/10.1007/s10509-013-1686-9.
Google Scholar
16
-
McCulloch ME. Quantised inertia from relativity and the uncertainty principle. Europhysics Letters (EPL), 2016;115(6):69001. URL https://doi.org/10.1209/0295-5075/115/69001.
Google Scholar
17
-
Cohen ER. Fundamental Physical Constants, in the book Gravitational Measurements, Fundamental Metrology and Constants. Edited by Sabbata, and Melniko, V. N., Netherland, Kluwer Academic Publishers, 1987.
Google Scholar
18
-
Haug EG. Can the Planck length be found independent of big G ? Applied Physics Research, 2017;9(6):58. URL https://doi.org/10.5539/apr.v9n6p58.
Google Scholar
19
-
Haug EG. Finding the Planck length multiplied by the speed of light without any knowledge of G, c, or h, using a newton force spring. Journal Physics Communication, 2020a;4:075001. URL https://doi.org/10.1088/2399-6528/ab9dd7.
Google Scholar
20
-
Haug EG. Planck units measured totally independently of big G. Open Journal of Microphysics, 2022a;12:55. URL https://doi.org/10.4236/ojm.2022.122004.
Google Scholar
21
-
Haug EG. Rethinking the foundation of physics and its relation to quantum gravity and quantum probabilities: Unification of gravity and quantum mechanics. Preprints.org, 2020b. URL https://www.preprints.org/manuscript/202012.0483/v2.
Google Scholar
22
-
Haug EG. Quantum Gravity Hidden In Newton Gravity And How To Unify It With Quantum Mechanics. in the book: The Origin of Gravity from the First Principles, Editor Volodymyr Krasnoholovets, NOVA Publishing, New York, 2021b.
Google Scholar
23
-
Haug EG. Unified quantum gravity field equation describing the universe from the smallest to the cosmological scales. Physics Essays, 2022b;5:61. URL https://doi.org/10.4006/0836-1398-35.1.61.
Google Scholar
24
-
Haug EG. God time = Planck time. Hal archive, 2022b. URL hhttps://hal.archives-ouvertes.fr/hal-03769825/.
Google Scholar
25
-
Haug EG. Progress on composite view of Newtonian gravitational constant and its link to the Planck scale. Universe, 2022c;8(454). URL https://doi.org/10.3390/universe8090454.
Google Scholar
26
-
Haug EG. Measurements of the Planck length from a ball-clock without knowledge of Newton’s gravitational constant G or the Planck constant.
Google Scholar
27
-
Kibble BP. A measurement of the gyromagnetic ratio of the proton by the strong field method. Atomic Masses and Fundamental Constants, 1975;5:545.
Google Scholar
28
-
Stock M. The watt balance: determination of the Planck constant and redefinition of the kilogram. Philosophical Transactions of the Royal Society, 2011;369:3936–3953. URL https://doi.org/10.1098/rsta.2011.0184.
Google Scholar
29
-
Robinson IA and Schlamminger S. The watt or Kibble balance: a technique for implementing the new si definition of the unit of mass. Metrologia, 2016;53(5):A46. URL https://doi.org/10.1088/0026-1394/53/5/A46.
Google Scholar
30
-
Haug EG. The Planck constant and its relation to the Compton frequency. 2021b. URL https://vixra.org/abs/2111.0096.
Google Scholar
31
-
Newton I. Philosophiae Naturalis Principia Mathematica. London, Jussu Societatis Regiae ac Typis Josephi Streater, 1686.
Google Scholar
32
-
Cavendish H. Experiments to determine the density of the earth. Philosophical Transactions of the Royal Society of London, (part II), 88, 1798.
Google Scholar
33
-
Clotfelter BE. The Cavendish experiment as Cavendish knew it. American Journal of Physics, 1987;55:210. URL https://doi.org/10.1119/1.15214.
Google Scholar
34
-
Hodges L. The Michelle-Cavendish experiment. Web Archive, 1998. URL https://web.archive.org/web/20170906134148/http://www.public.iastate.edu/∼lhodges/Michell.htm.
Google Scholar
35
Most read articles by the same author(s)
-
Espen Gaarder Haug,
Planck Speed: the Missing Speed of Physics? Absolute Still Without Breaking Lorentz Symmetry! , European Journal of Applied Physics: Vol. 4 No. 1 (2022) -
Espen Gaarder Haug,
Measurements of the Planck Length from a Ball Clock without Knowledge of Newton’s Gravitational Constant G or the Planck Constant , European Journal of Applied Physics: Vol. 3 No. 6 (2021) -
Espen Gaarder Haug,
Relativistic Compton Wavelength , European Journal of Applied Physics: Vol. 4 No. 4 (2022) -
Espen Gaarder Haug,
A Note on the Dimensionless Gravitational Coupling Constant Down to the Quantum Level , European Journal of Applied Physics: Vol. 5 No. 2 (2023)