##plugins.themes.bootstrap3.article.main##

Aim: Whether, under all the circumstances considered, a relativistic concept of locality and non-locality may fully reproduce the quantum probabilities for outcomes of experiments, is re-investigated.
Methods: The usual methods and rules of statistics, probability theory and quantum mechanics were used.
Results: The interior logic of the variance has been re-investigated. A relationship between the Pythagorean theorem and the variance has been established. A n-dimensional Pythagorean theorem has been derived. The problem of locality and non-locality and the relationship to the variance has been analysed.
Conclusion: It may no longer stay an open question how to deal with the notions of locality and non-locality.

References

  1. I. Barukčić, Die Kausalität, 1. Aufl. Hamburg: Wiss.- Verl., Jan. 1989, isbn: 3-9802216-0-1.
     Google Scholar
  2. ——, Die Kausalität, 2., völlig überarb. Aufl. Wil- helmshaven: Scientia, Jan. 1997, isbn: 3-9802216-4-4.
     Google Scholar
  3. ——, Causality: New statistical methods. Norderstedt, Germany: Books on Demand GmbH, Jan. 2005, isbn: 978-3-8334-3645-1.
     Google Scholar
  4. ——, Causality: New statistical methods, 2. Aufl. Norderstedt: Books on Demand, 2006, isbn: 978-3- 8334-6080-7.
     Google Scholar
  5. ——, Causality I. A theory of energy, time and space, 5. ed., 14. rev. 2009, isbn: 978-1-4092-2952-0.
     Google Scholar
  6. ——, “Anti Heisenberg—Refutation Of Heisenberg’s Uncertainty Relation,” AIP Conference Proceedings, vol. 1327, no. 1, pp. 322–325, Mar. 2011, issn: 0094- 243X. doi: 10.1063/1.3567453. [Online]. Available: https://aip.scitation.org/doi/abs/10.1063/1.3567453 (visited on 10/25/2019).
     Google Scholar
  7. ——, “The Equivalence of Time and Gravitational Field,” Physics Procedia, vol. 22, pp. 56–62, Jan. 2011, issn: 18753892. doi: 10.1016/j.phpro.2011.11.008.
     Google Scholar
  8. ——, “Anti-Bell - Refutation of Bell’s theorem: In: Quantum Theory: Reconsideration of Foundations-6 (QTRF6), Växjö, (Sweden), 11-14 June 2012,” in Amer- ican Institute of Physics - Conference Proceedings, vol. 1508, Vaxjo, Sweden: American Institute of Physics - Conference Proceedings, 2012, pp. 354–358. doi: 10. 1063/1.4773147. [Online]. Available: https://aip. scitation.org/doi/abs/10.1063/1.4773147.
     Google Scholar
  9. ——, “The Relativistic Wave Equation,” International Journal of Applied Physics and Mathematics, vol. 3, no. 6, pp. 387–391, Jan. 2013. doi: 10.7763/IJAPM. 2013.V3.242.
     Google Scholar
  10. ——, “Anti Heisenberg – Refutation of Heisenberg’s Uncertainty Principle,” International Journal of Applied Physics and Mathematics, vol. 4, no. 4, pp. 244–250, 2014. doi: 10.7763/IJAPM.2014.V4.292.
     Google Scholar
  11. ——, “Anti Chsh—Refutation of the Chsh Inequality,” Journal of Applied Mathematics and Physics, vol. 04, no. 04, pp. 686–696, 2016, issn: 2327-4352. doi: 10. 4236/jamp.2016.44079.
     Google Scholar
  12. ——, “Anti Heisenberg—The End of Heisenberg’s Un- certainty Principle,” Journal of Applied Mathematics and Physics, vol. 04, no. 05, pp. 881–887, 2016, issn: 2327-4352. doi: 10.4236/jamp.2016.45096.
     Google Scholar
  13. ——, “The Mathematical Formula of the Causal Re- lationship k,” International Journal of Applied Physics and Mathematics, vol. 6, no. 2, pp. 45–65, Jan. 2016. doi: 10.17706/ijapm.2016.6.2.45-65.
     Google Scholar
  14. ——, “Unified Field Theory,” en, Journal of Applied Mathematics and Physics, vol. 04, no. 08, pp. 1379– 1438, Aug. 2016. doi: 10.4236/jamp.2016.48147. [Online]. Available: https://www.scirp.org/journal/ PaperInformation . aspx ? PaperID = 69478 & #abstract (visited on 01/12/2019).
     Google Scholar
  15. ——, Theoriae causalitatis principia mathematica. Norderstedt: Books on Demand, 2017, isbn: 978-3- 7448-1593-2.
     Google Scholar
  16. ——, “Aristotle’s law of contradiction and Einstein’s special theory of relativity,” en, Journal of Drug Deliv- ery and Therapeutics, vol. 9, no. 2, pp. 125–143, Mar. 2019, issn: 2250-1177. doi: 10.22270/jddt.v9i2.2389. [Online]. Available: http://jddtonline.info/index.php/ jddt/article/view/2389 (visited on 03/16/2019).
     Google Scholar
  17. ——, “Negatio et negatio negationis,” https://vixra.org/abs/1912.0145, Dec. 2019, [Online]. Available: https://doi.org/10.5281/zenodo.3898753.
     Google Scholar
  18. A. K. Bettinger and J. A. Englund, Algebra And Trigonometry, eng. International Textbook Company., 1960. [Online]. Available: http://archive.org/details/ algebraandtrigon033520mbp (visited on 07/31/2019).
     Google Scholar
  19. I.-J. Bienaymé, “Considérations a l’appui de la dé- couverte de Laplace sur la loi de probabilité dans la méthode des moindres carrés,” Comptes rendus des séances de l’Académie des Sciences des Paris, vol. 37, pp. 309–324, 1853.
     Google Scholar
  20. R. Bombelli, L’ algebra : opera di Rafael Bombelli da Bologna, divisa in tre libri : con la quale ciascuno da se potrà venire in perfetta cognitione della teorica dell’Aritmetica : con una tavola copiosa delle materie, che in essa si contengono, ita. Bolgna (Italy): per Giovanni Rossi, 1579. [Online]. Available: http://www. e-rara.ch/doi/10.3931/e-rara-3918 (visited on 02/14/2019).
     Google Scholar
  21. M. Born, “Zur Quantenmechanik der Stoßvorgänge,” de, Zeitschrift für Physik, vol. 37, no. 12, pp. 863–867, Dec. 1926, issn: 0044-3328. doi: 10.1007/BF01397477. [On- line]. Available: https://doi.org/10.1007/BF01397477 (visited on 02/12/2019).
     Google Scholar
  22. L. C. Bruno and L. W. Baker, Math and mathemati- cians: the history of math discoveries around the world. Detroit, Mich: U X L, 1999, isbn: 978-0-7876-3812-2.
     Google Scholar
  23. R. Cotes and E. Halley, “Logometria,” Philosophical Transactions of the Royal Society of London, vol. 29, no. 338, pp. 5–45, Jan. 1714, Publisher: Royal Society. doi: 10.1098/rstl.1714.0002. [Online]. Available: https: //royalsocietypublishing.org/doi/10.1098/rstl.1714.0002 (visited on 10/03/2020).
     Google Scholar
  24. P. Drude, “Zum Studium des elektrischen Resonators,” Annalen der Physik und Chemie, vol. 53, no. 3, pp. 721– 768, 1894.
     Google Scholar
  25. K. Easwaran, “The Role of Axioms in Mathematics,” en, Erkenntnis, vol. 68, no. 3, pp. 381–391, May 2008, issn: 1572-8420. doi: 10.1007/s10670-008-9106-1. [Online]. Available: https://doi.org/10.1007/s10670- 008-9106-1 (visited on 12/08/2019).
     Google Scholar
  26. B. Efron, “R. A. Fisher in the 21st century (Invited paper presented at the 1996 R. A. Fisher Lecture),” en, Statistical Science, vol. 13, no. 2, pp. 95–122, May 1998, Publisher: Institute of Mathematical Statis- tics, issn: 0883-4237, 2168-8745. doi: 10.1214/ss/ 1028905930. [Online]. Available: https://projecteuclid. org/euclid.ss/1028905930 (visited on 10/03/2020).
     Google Scholar
  27. A. Einstein, “Induktion and Deduktion in der Physik,” German, Berliner Tageblatt and Handelszeitung, Suppl. 4, Dec. 1919. [Online]. Available: https://einsteinpapers. press.princeton.edu/vol7-trans/124.
     Google Scholar
  28. L. Euler, Introductio in analysin infinitorum, lat. apud Marcum-MIchaelem Bousquet & socios, 1748. doi: 10. 3931 / e - rara - 8740. [Online]. Available: http : / / www. e-rara.ch/doi/10.3931/e-rara-8740 (visited on 07/29/2019).
     Google Scholar
  29. P. Finsler, “Über Kurven und Flächen in allgemeinen Räumen,” German, Ph.D. dissertation, Georg-August Universität, Göttingen, 1918. [Online]. Available: https: //gdz.sub.uni-g%7B%5C%22o%7Dttingen.de/id/ PPN321583582.
     Google Scholar
  30. R. A. Fisher, “XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance.,” en, Transactions of The Royal Society of Edinburgh, vol. 52, no. 2, pp. 399–433, 1918, Publisher: Royal Society of Edinburgh Scotland Foundation, issn: 2053-5945, 0080-
     Google Scholar
  31. doi: 10 . 1017 / S0080456800012163. [Online]. Available: https : / / www. cambridge . org / core / journals / earth - and - environmental - science - transactions - of - royal-society-of-edinburgh/article/xvthe-correlation- between - relatives - on - the - supposition - of - mendelian - inheritance / A60675052E0FB78C561F66C670BC75DE (visited on 08/13/2020).
     Google Scholar
  32. J. A. G. González, “Metateoría de lo primero,” Contrastes. Revista Internacional de Filosofía, vol. 2, pp. 105–110, Jan. 1997. doi: 10 . 24310 / Contrastescontrastes . v2i0 . 1754. [Online]. Available: http://www.revistas.uma.es/index.php/contrastes/article/ view/1754/1696.
     Google Scholar
  33. D. Hilbert, “Axiomatisches Denken,” de, Mathematis- che Annalen, vol. 78, no. 1, pp. 405–415, Dec. 1917, issn: 1432-1807. doi: 10.1007/BF01457115. [Online]. Available: https://doi.org/10.1007/BF01457115 (visited on 05/30/2019).
     Google Scholar
  34. A. N. Kolmogorov, Foundations of the theory of prob- ability, eng, Second English Edition. Translated by Nathan Morrison. New York: Chelsea Publishing Com- pany, 1956, isbn: 978-0-486-82159-7.
     Google Scholar
  35. G. W. Leibniz Freiherr von, Oeuvres philosophiques latines & françoises de feu Mr. de Leibnitz. Amsterdam (NL): Chez Jean Schreuder, 1765. [Online]. Available: https : / / archive . org / details / oeuvresphilosoph00leibuoft / page/n9 (visited on 01/16/2019).
     Google Scholar
  36. ——, “Explication de l’arithmétique binaire, qui se sert des seuls caractères O et I avec des remarques sur son utilité et sur ce qu’elle donne le sens des anciennes figures chinoises de Fohy,” Mémoires de mathématique et de physique de l’Académie royale des sciences, 1703. [Online]. Available: https://hal.archives-ouvertes.fr/ads- 00104781 (visited on 02/20/2019).
     Google Scholar
  37. Leon Brillouin, Wave Propagation In Periodic Struc- tures Electric Filters And Crystal Lattices First Edi- tion, eng. New York (USA): Mcgraw-hil Book Company, Inc., 1946. [Online]. Available: http://archive.org/details/in.ernet.dli.2015.166889 (visited on 10/04/2020).
     Google Scholar
  38. E. S. Loomis, The Pythagorean proposition: its demon-
     Google Scholar
  39. strations analyzed and classified and bibliography of sources for data of the four kinds of "proofs", English. Washington: National Council of Teachers of Mathe- matics, 1968, OCLC: 1151068738. [Online]. Available: https://archive.org/details/pythagoreanpropo0000loom_ b2m3 (visited on 10/02/2020).
     Google Scholar
  40. E. Maor, The Pythagorean Theorem: A 4,000-Year History. Princeton University Press, 2007, isbn: 978- 0-691-19688-6. doi: 10 . 2307 / j . ctvh9w0ks. [Online]. Available: https://www.jstor.org/stable/j.ctvh9w0ks (visited on 10/02/2020).
     Google Scholar
  41. L. Pacioli, Summa de arithmetica, geometria, propor- tioni et proportionalità, ita. Venice, 1494. [Online]. Available: http://doi.org/10.3931/e-rara-9150 (visited on 02/16/2019).
     Google Scholar
  42. B. Ratner, “Pythagoras: Everyone knows his famous theorem, but not who discovered it 1000 years be- fore him,” en, Journal of Targeting, Measurement and Analysis for Marketing, vol. 17, no. 3, pp. 229–242, Sep. 2009, issn: 1479-1862. doi: 10 . 1057 / jt . 2009 . 16. [Online]. Available: https://doi.org/10.1057/jt.2009.16 (visited on 10/02/2020).
     Google Scholar
  43. R. Recorde, The whetstone of witte, whiche is the seconde parte of Arithmetike: containyng thextraction of Rootes: The Coßike practise, with the rule of Equation: and the woorkes of Surde Nombers, English. London: Jhon Kyngstone, 1557. [Online]. Available: http : / / archive . org / details / TheWhetstoneOfWitte (visited on 06/05/2019).
     Google Scholar
  44. M. Rolle, Traité d’algèbre ou principes généraux pour résoudre les questions de mathématique. Paris (France): chez Estienne Michallet, 1690. [Online]. Available: https://www.e-rara.ch/doi/10.3931/e-rara-16898 (visited on 02/16/2019).
     Google Scholar
  45. M. Ruiz Espejo, “Review of Causality: New Statisti- cal Methods, 2nd edn (by Ilija Barukcic; Books on Demand, Norderstedt DE, 2006): 34:1013-1014,” Jour- nal of Applied Statistics, vol. 34, no. 8, pp. 1013– 1014, Jan. 2007, issn: 0266-4763. doi: 10 . 1080 / 02664760701590707.
     Google Scholar
  46. M. E. Thompson, “Ilija Barukčić. Causality. New Sta- tistical Methods. A Book Review.,” International Sta- tistical Institute - Short Book Review, vol. 26, no. 01, p. 6, Jan. 2006. [Online]. Available: http://isi.cbs.nl/sbr/ images/V26-1_Apr06.pdf.
     Google Scholar
  47. F. Tombe, “The 1856 Weber-Kohlrausch Experiment (The Speed of Light),” Oct. 2015.
     Google Scholar
  48. P. L. Tschébychef, “Des valeurs moyennes,” Journal de Mathématiques Pures et Appliquées, vol. 12, no. 2, pp. 177–184, 1867. doi: http : / / sites . mathdoc . fr / JMPA/PDF/JMPA_1867_2_12_A11_0.pdf. [Online]. Available: http://sites.mathdoc.fr/JMPA/PDF/JMPA_ 1867_2_12_A11_0.pdf.
     Google Scholar
  49. J. v. Uspensky, Introduction To Mathematical Probability. New York (USA): McGraw-Hill Company, 1937.
     Google Scholar
  50. W. Weber and R. Kohlrausch, “Elektrodynamische Maassbestimmungen: Insbesondere Zurueckfuehrung der Stroemintensitaetsmessungen auf mechanisches Maass,” Abhandlungen der Königlich-Sächsischen Gesellschaft der Wissenschaften, vol. 5 (Leipzig: S. Hirzel), 1857.
     Google Scholar
  51. W. E. Weber and R. Kohlrausch, “Ueber die Elektric- itätsmenge, welche bei galvanischen Strömen durch den Querschnitt der Kette fliesst,” Annalen der Physik und Chemie, vol. 99, pp. 10–25, 1856. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-662- 24693-1_14.
     Google Scholar
  52. J. Widmann, Behende und hüpsche Rechenung auff allen Kauffmanschafft. Leipzig (Holy Roman Empire): Conrad Kachelofen, 1489. [Online]. Available: http:// hdl.loc.gov/loc.rbc/Rosenwald.0143.1.
     Google Scholar
  53. R. J. Wilson, Euler’s pioneering equation: the most beautiful theorem in mathematics, First edition. Ox- ford, United Kingdom: Oxford University Press, 2018, OCLC: ocn990970269, isbn: 978-0-19-879492-9.
     Google Scholar
  54. S. Yeng, T. Lin, and Y.-F. Lin, “The n-dimensional pythagorean theorem,” en, Linear and Multilinear Alge- bra, Apr. 2008, Publisher: Gordon and Breach Science Publishers. doi: 10.1080/03081089008817961. [On- line]. Available: https://www.tandfonline.com/doi/pdf/ 10.1080/03081089008817961 (visited on 09/09/2020).
     Google Scholar
  55. P. M. Zesar, nihil fit sine causa - Die Kausalität im Spanischen und Portugiesischen: DIPLOMARBEIT. Magister der Philosophie. Wien: Universität Wien, Jan. 2013. [Online]. Available: http://othes.univie.ac.at/ 25095/1/2013-01-22_0506065.pdf.
     Google Scholar