##plugins.themes.bootstrap3.article.main##

In this study, a modified spatial interpolation method called Adjusted Inverse Distance Weighted (AIDW) is used to analyze meteorological data around the Islamic University, Bangladesh. For the analysis of meteorological data, data were collected from different areas of Islamic University, Kushtia by the well-known portable weather meter Kestrel 3500 weather meter. For the synthesis of the observed data, an efficient solution to the problem of two dimensional interpolation from irregularly-spaced data points in order to anticipate and calculate the desired value, a non-uniform distribution of sample points is used. This method of research is used on some important parameters related to weather and the weather of the study area. A reasonable agreement with the observed and synthesis data of Adjusted Inverse Distance Weighted (AIDW) interpolation was found in this study.

References

  1. Delbari M, Afrasiab P, Jahani S. Spatial interpolation of monthly and annual rainfall in northeast of Iran. Meteorol Atmos Phys. 2013 Aug 8;122(1–2):103–13.
     Google Scholar
  2. Wang S, Huang GH, Lin QG, Li Z, Zhang H, Fan YR. Comparison of interpolation methods for estimating spatial distribution of precipitation in Ontario, Canada. Int J Climatol. 2014 Nov 1;34(14):3745–51.
     Google Scholar
  3. Borges P de A, Franke J, da Anunciação YMT, Weiss H, Bernhofer C. Comparison of spatial interpolation methods for the estimation of precipitation distribution in Distrito Federal, Brazil. Theor Appl Climatol. 2016 Jan 9;123(1–2):335–48.
     Google Scholar
  4. Chen T, Ren L, Yuan F, Yang X, Jiang S, Tang T, et al. Comparison of spatial interpolation schemes for rainfall data and application in hydrological modeling. Water (Switzerland). 2017 May 11;9(5):342.
     Google Scholar
  5. Li J, Heap AD. A Review of Spatial Interpolation Methods for Environmental Scientists. Aust Geol Surv Organ. 2008;GeoCat# 68(2008/23):154.
     Google Scholar
  6. Chen FW, Liu CW. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ. 2012 Feb 25;10(3):209–22.
     Google Scholar
  7. Apaydin H, Kemal Sonmez F, Yildirim YE. Spatial interpolation techniques for climate data in the GAP region in Turkey. Clim Res. 2004 Dec 31;28(1):31–40.
     Google Scholar
  8. Yeh HC, Chen YC, Wei C, Chen RH. Entropy and kriging approach to rainfall network design. Paddy Water Environ. 2011 Jan 12;9(3):343–55.
     Google Scholar
  9. Li X, Cheng G, Lu L. Spatial analysis of air temperature in the Qinghai-Tibet Plateau. Arctic, Antarct Alp Res. 2005;37(2):246–52.
     Google Scholar
  10. Shi WZ, Tian Y. A hybrid interpolation method for the refinement of a regular grid digital elevation model. Int J Geogr Inf Sci. 2006 Jan;20(1):53–67.
     Google Scholar
  11. Ozelkan E, Bagis S, Ozelkan EC, Ustundag BB, Yucel M, Ormeci C. Spatial interpolation of climatic variables using land surface temperature and modified inverse distance weighting. Int J Remote Sens. 2015 Feb 16;36(4):1000–25.
     Google Scholar
  12. Wang Y, Yang H, Yang D, Qin Y, Gao B, Cong Z. Spatial interpolation of daily precipitation in a high mountainous watershed based on gauge observations and a regional climate model simulation. J Hydrometeorol. 2017 Mar 1;18(3):845–62.
     Google Scholar
  13. Al Mohit MA, Yamashiro M, Hashimoto N, Mia MB, Ide Y, Kodama M. Impact assessment of a major river basin in Bangladesh on storm surge simulation. J Mar Sci Eng. 2018 Aug 28;6(3):99.
     Google Scholar
  14. Al Mohit MA, Towhiduzzaman M. A numerical estimate of water level elevation due to a cyclone associated with a different landfall angle. Sains Tanah. 2022 Mar 2;19(1):33–41.
     Google Scholar
  15. Lu GY, Wong DW. An adaptive inverse-distance weighting spatial interpolation technique. Comput Geosci. 2008 Sep 1;34(9):1044–55.
     Google Scholar
  16. Azpurua M, dos Ramos K. A comparison of spatial interpolation methods for estimation of average electromagnetic field magnitude. Prog Electromagn Res M. 2010;14:135–45.
     Google Scholar
  17. Gotway CA, Ferguson RB, Hergert GW, Peterson TA. Comparison of Kriging and Inverse-Distance Methods for Mapping Soil Parameters. Soil Sci Soc Am J. 1996 Jul 1;60(4):1237–47.
     Google Scholar
  18. Hooyberghs J, Mensink C, Dumont G, Fierens F. Spatial interpolation of ambient ozone concentrations from sparse monitoring points in Belgium. J Environ Monit. 2006 Oct 30;8(11):1129–35.
     Google Scholar
  19. Seyyed N, Golkhatmi N, Golkhatmi NS, Sanaeinejad SH, Ghahraman B, Pazhand HR. Extended Modified Inverse Distance Method for Interpolation Rainfall Quality control of Meteorological data View project first and last frost View project Extended Modified Inverse Distance Method for Interpolation Rainfall. Int J Eng Invent. 2012;1(3):57–65.
     Google Scholar