##plugins.themes.bootstrap3.article.main##

The single-crystal XRD investigation shows that, an entitled compound is crystallized in a triclinic lattice of P1 space group. In
the crystal, the molecular units are organized by a weak intermolecular C-H. . . O and C-H. . . N interactions. The interactions were
explored by a three dimensional Hirshfeld surfaces mapped on different properties. The associative two-dimensional fingerprint
graphs are generated to indicate the major driving force of crystal packing. The three dimensional interaction energies are calculated
for the intermolecular interactions using the energy density wave function of B3LYP/6-31G(d,p) and reported herein.

References

  1. Sener E. A., Bing¨ol K. K., Oren ¨ ˙I., Arpacı O. T., Yalc¸in ¨ ˙I., Altanlar N., Synthesis and microbiological activity of some N-(o-hydroxyphenyl)benzamides and phenylacetamides as the possible metabolites of antimicrobial active benzoxazoles: part II. Il Farmaco, 2000;55(6-7):469–476.
     Google Scholar
  2. Fu J., Cheng K., Zhang Z.-M., Fang R.-Q., Zhu H.-L. Synthesis, structure and structure-activity relationship analysis of caffeic acid amides as potential antimicrobials.Eur. J. Med. Chem., 2010;45(6):2638–2643.
     Google Scholar
  3. Carbonnelle D., Ebstein F., Rabu C., Petit J. Y., Gregoire M., Lang F. A new carboxamide compound exerts immuno-suppressive activity by inhibiting dendritic cell maturation. Eur. J. Immunol., 2005;35:546–556.
     Google Scholar
  4. Kushwaha N., Saini R. K., Kushwaha S. K. Synthesis of some amide derivatives and their biological activity. Int. J. Chem. Technol.Res., 2011;3(1):203–209.
     Google Scholar
  5. Li X., Li Z., Deng H., Zhou X. An efficient protocol for the preparation of amides by copper-catalyzed reactions between nitriles and amines in water. Tetrahedron Lett., 2013;54(18):2212–2216.
     Google Scholar
  6. Humphrey J. M., Chamberlin A. R., Chemical synthesis of natural product peptides: Coupling methods for the incorporation of noncoded amino acids into peptides. Chem. Rev., 1997;97(6):2243–2266.
     Google Scholar
  7. Harisha A. S., Parameshwar Nayak, S., Nagarajan, K., Guru Row, T. N., Hosamani, A. A. Novel triethylamine mediated thermal reactions of 3-aryl-2-cyanoprop-2-enoic acid derivatives—demethylation, reduction and vinylogation. Tetrahedron , 2015;56:1427–1431.
     Google Scholar
  8. Sheldrick G. M. Acta Cryst. 2015;C71:3–8. https://doi.org/10.1107/S2053229614024218.
     Google Scholar
  9. Spek A. L. Acta Crystallogr. 2009;D65(2):148–155.
     Google Scholar
  10. Macrae C. F., Bruno I. J., Chisholm J. A., Edgington P. R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., van de Streek J., Wood P. A. J. Appl. Cryst., 2008;41(2):466–470.
     Google Scholar
  11. Spackman P. R., Turner M. J., McKinnon J. J., Wolff S. K., Grimwood D. J., Jayatilaka D. & Spackman M. A. J. Appl. Cryst., 2021;54(3):1006–1011. https://doi.org/10.1107/S1600576721002910.
     Google Scholar
  12. McKinnon J. J., Jayatilaka D., Spackman M. A., Chem. Commun., 2007: 3814–3816.
     Google Scholar
  13. Spackman M. A., McKinnon J. J., Jayatilaka D. CrystEngComm, 2008;10:377–388.
     Google Scholar
  14. McKinnon J. J., Spackman M. A., Mitchell A. S. Acta Crystallogr., 2004;B60(6):627–668.
     Google Scholar
  15. Turner M. J. , McKinnon J. J., Wolff S. K., Grimwood D. J., Spackman P. R., Jayatilaka D., and Spackman M. A. CrystalExplorer17 (2017). University of Western Australia.
     Google Scholar
  16. Sreenatha N. R, Jeevan Chakravarthy A. S., Lakshminarayana B. N., Hariprasad S. Structural characterization, computational, charge density studies of 2-chloro-3-(2’-methoxy)-5,5-dimethyl-2-cyclohexenone. Journal of Molecular Structure, 2021;1225:129116. https://doi.org/10.1016/j.molstruc.2020.129116.
     Google Scholar
  17. Lakshminarayana B. N., Sreenatha N. R., Jeevan Chakravarthy A. S., Suchithra B., and Hariprasad S. Structural, Computational and 3D Interaction Energy Calculations of the Compound 2-chloro-3-(1-napthyl)-5,5-dimethyl-2-cyclohexenone. Crystallography Reports, 2022;67(2):201–208.
     Google Scholar
  18. Salorinne K., Lahtinen T. Crystal structure of 5-3-[2,6-dimethyl- 4-(5-methyl-1,2,4-oxadiazol-3-yl)phenoxy]propyl- N-(11-hydroxyundecyl)isoxazole-3-carboxamide hemihydrate. Acta Cryst., 2015;E71:505–508.
     Google Scholar
  19. Lobana T. S., Butcher R. J. and Jasinski J. P. Acta Cryst., 2022;E78:540-544.
     Google Scholar
  20. Sreenatha N. R., Lakshminarayana B. N., Ganesha D. P., Gnanendra C. R. Crystal structure and Hirshfeld surface analysis of (E)-1-(3,5-dichloro-2-hydroxyphenyl)-3-(5-methyl- furan-2-yl)prop-2-en-1-one. Acta Cryst., 2018;E74:1451–1454.
     Google Scholar
  21. Zachary O. B., Jordan T. K., Elise M. N., Paloma W., Kraig A. W., Charlie L. H., Jason P., Victoria H., Simon R. H., Gemma D. D., Masaomi M.,
     Google Scholar
  22. Stephen D. W. and Matthew E. C. Crystal structure and Hirshfeld analysis of 3′-bromo-4-methylchalcone and 3′-cyano-4- methylchalcone. Acta Cryst., 2020;E76:1496–1502. https://doi.org/10.1107/S2056989020011135.
     Google Scholar
  23. Sreenatha N. R., Lakshminarayana B. N., Ganesha D. P., Vijayshankar S., Nagaraju S. Crystal Structure and Hirshfeld Surfaces of (E)-1-(2-Hydroxyphenyl)-3-(5-methylthiophen-2-yl)prop-2-en-1-one. X-Ray Structure Analysis Online, 2018;34:23–24.
     Google Scholar
  24. Sreenatha N. R., Jeevan Chakravarthy A. S., Suchithra B., Lakshminarayana B. N., Hariprasad S., Ganesha D. P. Crystal, spectral characterization, molecular docking, Hirshfeldcomputational studies and 3D-energy framework analysis of a novel puckered compound (C14H15ClO): 2-Chloro-3-phenyl5,5-dimethylcyclohex-2-en-1-one. Journal of Molecular Structure,2020;1210:127979. https://doi.org/10.1016/j.molstruc.2020.127979.
     Google Scholar
  25. Mackenzie C. F., Spackman P. R., Jayatilaka D., Spackman M. A. IUCrJ, 2017;4(5):575–587.
     Google Scholar