Structural Investigation, Hirshfeld Surfaces and 3D Interaction Energy Analysis of the Compound 3-aryl-2-cyanoprop-2-enoic Acid

##plugins.themes.bootstrap3.article.main##

  •   N. R. Sreenatha

  •   A. S. Harisha

  •   D. P. Ganesha

  •   T. N. Mahadeva Prasad

  •   G. B. Thippeswamy

  •   B. N. Lakshminarayana

Abstract

The single-crystal XRD investigation shows that, an entitled compound is crystallized in a triclinic lattice of P1 space group. In
the crystal, the molecular units are organized by a weak intermolecular C-H. . . O and C-H. . . N interactions. The interactions were
explored by a three dimensional Hirshfeld surfaces mapped on different properties. The associative two-dimensional fingerprint
graphs are generated to indicate the major driving force of crystal packing. The three dimensional interaction energies are calculated
for the intermolecular interactions using the energy density wave function of B3LYP/6-31G(d,p) and reported herein.


Keywords: Fingerprint graphs, Hirshfeld surfaces, Interaction energies, Single crystal XRD

References

Sener E. A., Bing¨ol K. K., Oren ¨ ˙I., Arpacı O. T., Yalc¸in ¨ ˙I., Altanlar N., Synthesis and microbiological activity of some N-(o-hydroxyphenyl)benzamides and phenylacetamides as the possible metabolites of antimicrobial active benzoxazoles: part II. Il Farmaco, 2000;55(6-7):469–476.

Fu J., Cheng K., Zhang Z.-M., Fang R.-Q., Zhu H.-L. Synthesis, structure and structure-activity relationship analysis of caffeic acid amides as potential antimicrobials.Eur. J. Med. Chem., 2010;45(6):2638–2643.

Carbonnelle D., Ebstein F., Rabu C., Petit J. Y., Gregoire M., Lang F. A new carboxamide compound exerts immuno-suppressive activity by inhibiting dendritic cell maturation. Eur. J. Immunol., 2005;35:546–556.

Kushwaha N., Saini R. K., Kushwaha S. K. Synthesis of some amide derivatives and their biological activity. Int. J. Chem. Technol.Res., 2011;3(1):203–209.

Li X., Li Z., Deng H., Zhou X. An efficient protocol for the preparation of amides by copper-catalyzed reactions between nitriles and amines in water. Tetrahedron Lett., 2013;54(18):2212–2216.

Humphrey J. M., Chamberlin A. R., Chemical synthesis of natural product peptides: Coupling methods for the incorporation of noncoded amino acids into peptides. Chem. Rev., 1997;97(6):2243–2266.

Harisha A. S., Parameshwar Nayak, S., Nagarajan, K., Guru Row, T. N., Hosamani, A. A. Novel triethylamine mediated thermal reactions of 3-aryl-2-cyanoprop-2-enoic acid derivatives—demethylation, reduction and vinylogation. Tetrahedron , 2015;56:1427–1431.

Sheldrick G. M. Acta Cryst. 2015;C71:3–8. https://doi.org/10.1107/S2053229614024218.

Spek A. L. Acta Crystallogr. 2009;D65(2):148–155.

Macrae C. F., Bruno I. J., Chisholm J. A., Edgington P. R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., van de Streek J., Wood P. A. J. Appl. Cryst., 2008;41(2):466–470.

Spackman P. R., Turner M. J., McKinnon J. J., Wolff S. K., Grimwood D. J., Jayatilaka D. & Spackman M. A. J. Appl. Cryst., 2021;54(3):1006–1011. https://doi.org/10.1107/S1600576721002910.

McKinnon J. J., Jayatilaka D., Spackman M. A., Chem. Commun., 2007: 3814–3816.

Spackman M. A., McKinnon J. J., Jayatilaka D. CrystEngComm, 2008;10:377–388.

McKinnon J. J., Spackman M. A., Mitchell A. S. Acta Crystallogr., 2004;B60(6):627–668.

Turner M. J. , McKinnon J. J., Wolff S. K., Grimwood D. J., Spackman P. R., Jayatilaka D., and Spackman M. A. CrystalExplorer17 (2017). University of Western Australia.

Sreenatha N. R, Jeevan Chakravarthy A. S., Lakshminarayana B. N., Hariprasad S. Structural characterization, computational, charge density studies of 2-chloro-3-(2’-methoxy)-5,5-dimethyl-2-cyclohexenone. Journal of Molecular Structure, 2021;1225:129116. https://doi.org/10.1016/j.molstruc.2020.129116.

Lakshminarayana B. N., Sreenatha N. R., Jeevan Chakravarthy A. S., Suchithra B., and Hariprasad S. Structural, Computational and 3D Interaction Energy Calculations of the Compound 2-chloro-3-(1-napthyl)-5,5-dimethyl-2-cyclohexenone. Crystallography Reports, 2022;67(2):201–208.

Salorinne K., Lahtinen T. Crystal structure of 5-3-[2,6-dimethyl- 4-(5-methyl-1,2,4-oxadiazol-3-yl)phenoxy]propyl- N-(11-hydroxyundecyl)isoxazole-3-carboxamide hemihydrate. Acta Cryst., 2015;E71:505–508.

Lobana T. S., Butcher R. J. and Jasinski J. P. Acta Cryst., 2022;E78:540-544.

Sreenatha N. R., Lakshminarayana B. N., Ganesha D. P., Gnanendra C. R. Crystal structure and Hirshfeld surface analysis of (E)-1-(3,5-dichloro-2-hydroxyphenyl)-3-(5-methyl- furan-2-yl)prop-2-en-1-one. Acta Cryst., 2018;E74:1451–1454.

Zachary O. B., Jordan T. K., Elise M. N., Paloma W., Kraig A. W., Charlie L. H., Jason P., Victoria H., Simon R. H., Gemma D. D., Masaomi M.,

Stephen D. W. and Matthew E. C. Crystal structure and Hirshfeld analysis of 3′-bromo-4-methylchalcone and 3′-cyano-4- methylchalcone. Acta Cryst., 2020;E76:1496–1502. https://doi.org/10.1107/S2056989020011135.

Sreenatha N. R., Lakshminarayana B. N., Ganesha D. P., Vijayshankar S., Nagaraju S. Crystal Structure and Hirshfeld Surfaces of (E)-1-(2-Hydroxyphenyl)-3-(5-methylthiophen-2-yl)prop-2-en-1-one. X-Ray Structure Analysis Online, 2018;34:23–24.

Sreenatha N. R., Jeevan Chakravarthy A. S., Suchithra B., Lakshminarayana B. N., Hariprasad S., Ganesha D. P. Crystal, spectral characterization, molecular docking, Hirshfeldcomputational studies and 3D-energy framework analysis of a novel puckered compound (C14H15ClO): 2-Chloro-3-phenyl5,5-dimethylcyclohex-2-en-1-one. Journal of Molecular Structure,2020;1210:127979. https://doi.org/10.1016/j.molstruc.2020.127979.

Mackenzie C. F., Spackman P. R., Jayatilaka D., Spackman M. A. IUCrJ, 2017;4(5):575–587.

##plugins.themes.bootstrap3.article.details##

How to Cite
Sreenatha, N. R., Harisha, A. S., Ganesha, D. P., Mahadeva Prasad, T. N., Thippeswamy, G. B., & Lakshminarayana, B. N. (2022). Structural Investigation, Hirshfeld Surfaces and 3D Interaction Energy Analysis of the Compound 3-aryl-2-cyanoprop-2-enoic Acid. European Journal of Applied Physics, 4(4), 12–23. https://doi.org/10.24018/ejphysics.2022.4.4.189