##plugins.themes.bootstrap3.article.main##

Phononic crystals are artificial engineered materials designed to control and manipulate waves. Unusual behaviour of prohibiting the acoustic propagation in some frequency bands (Band GAP), is a practical way to produce sound-ultrasound-proof environments with a small spatial footprint. In this work, we present a new fractal-like phononic crystal for extraordinary ultrasonic insulation. The host material is a silicon plate where the unit cell is formed by triangular slice and immersed in water. Our simulation is made between 300 kHz and 1.2 MHz and show the possibility of obtaining a wideband-gap, inferior to the one described by the mass law related to a homogeneous silicon membrane, with an attenuation reaching -70 dB, depending on the filling factor.

References

  1. Sukhovich A, Merheb B, Muralidharan K, Vasseur JO, Pennec Y, Deymier PA, et al. Experimental and theoretical evidence for subwavelength imaging in phononic crystals. Phys Rev Lett, 2009;102:1–4. https://doi.org/10.1103/PhysRevLett.102.154301.
     Google Scholar
  2. Li Y, Yu G, Liang B, Zou X, Li G, Cheng S, et al. Three-dimensional Ultrathin Planar Lenses by Acoustic Metamaterials. Sci Rep, 2015;4:6830. https://doi.org/10.1038/srep06830.
     Google Scholar
  3. Yang M, Sheng P. Sound Absorption Structures: From Porous Media to Acoustic Metamaterials. Annu Rev Mater Res, 2017;47:83–114. https://doi.org/10.1146/annurev-matsci-070616-124032.
     Google Scholar
  4. Li P, Li F, Liu Y, Shu F, Wu J, Wu Y. Temperature insensitive mass sensing of mode selected phononic crystal cavity. J Micromechanics Microengineering, 2015;25:125027. https://doi.org/10.1088/0960-1317/25/12/125027.
     Google Scholar
  5. Vasseur JO, Deymier PA, Chenni B, Djafari-Rouhani B, Dobrzynski L, Prevost D. Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. Phys Rev Lett, 2001;86:3012–5. https://doi.org/10.1103/PhysRevLett.86.3012.
     Google Scholar
  6. Hussein MI, Leamy MJ, Ruzzene M. Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook. Appl Mech Rev, 2014;66:040802. https://doi.org/10.1115/1.4026911.
     Google Scholar
  7. El Madani A. Bensallam S. Idrissi M. Addouche M. Elayouch A. Khelif A. Bouaaddi A. Achaoui Y. Jakjoud H. Investigation of Ultrasonic Opacity Based on Quarter-Wave Mode Resonance Using a Two-Dimensional Silicon Phononic Crystal. Innov. Smart Cities Appl., Springer Nature; 2021;4. https://doi.org/10.1007/978-3-030-66840-2_79
     Google Scholar
  8. El Madani A. Bensallam S. Elayouch A. Khelif A. Achaoui Y. Bouaaddi A. Jakjoud H. Ultrasonic insulation using a Helmholtz-like phononic crystal with a slight filling factor. ACM Int Conf Proceeding Ser, 2019:3–5. https://doi.org/10.1145/3368756.3369074.
     Google Scholar
  9. Elayouch A, Addouche M, Herth E, Khelif A. Experimental evidence of ultrasonic opacity using the coupling of resonant cavities in a phononic membrane. Appl Phys Lett, 2013;103. https://doi.org/10.1063/1.4819021.
     Google Scholar
  10. Yang M, Ma G, Yang Z, Sheng P. Subwavelength perfect acoustic absorption in membrane-type metamaterials: A geometric perspective. EPJ Appl Metamaterials, 2015;2. https://doi.org/10.1051/epjam/2015017.
     Google Scholar
  11. Tang Y, Ren S, Meng H, Xin F, Huang L, Chen T, et al. Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound. Sci Rep, 2017;7:1–10. https://doi.org/10.1038/srep43340.
     Google Scholar
  12. Steurer W, Sutter-Widmer D. Photonic and phononic quasicrystals. J Phys D Appl Phys, 2007;40. https://doi.org/10.1088/0022-3727/40/13/R01.
     Google Scholar
  13. Chen AL, Wang YS, Guo YF, Wang ZD. Band structures of Fibonacci phononic quasicrystals. Solid State Commun, 2008;145:103–8. https://doi.org/10.1016/j.ssc.2007.10.023.
     Google Scholar
  14. Castiñeira-Ibáñez S, Romero-García V, Sánchez-Pérez J V., Garcia-Raffi LM. Overlapping of acoustic bandgaps using fractal geometries. EPL, 2010;92:240071–3. https://doi.org/10.1209/0295-5075/92/24007.
     Google Scholar
  15. Oltulu O, Ozer Z, Mamedov AM, Ozbay E. Band structures of metacompsosite based phononic crystals in quasi-Sierpinski fractals. Epa - J Silic Based Compos Mater, 2022;74:57–60. https://doi.org/10.14382/epitoanyag-jsbcm.2022.9.
     Google Scholar
  16. Palaz S, Ozer Z, Mamedov AM, Ozbay E. Ferroelectric based fractal phononic crystals: wave propagation and band structure. Ferroelectrics, 2020;557:85–91. https://doi.org/10.1080/00150193.2020.1713352.
     Google Scholar
  17. Li L, Xie YC, Wang YQ, Hu XY, Feng ZF, Cheng BY. Absolute Gap of Two-Dimensional Fractal Photonic Structure. Chinese Phys Lett, 2003;20:1767–9. https://doi.org/10.1088/0256-307X/20/10/332.
     Google Scholar
  18. Hou B, Xie H, Wen W, Sheng P. Three-dimensional metallic fractals and their photonic crystal characteristics. Phys Rev B - Condens Matter Mater Phys, 2008;77:1–8. https://doi.org/10.1103/PhysRevB.77.125113.
     Google Scholar
  19. Mandelbrot BB, Wheeler JA. The Fractal Geometry of Nature. 1983;51. https://doi.org/10.1119/1.13295.
     Google Scholar
  20. Monsoriu JA, Zapata-Rodríguez CJ, Silvestre E, Furlan WD. Cantor-like fractal photonic crystal waveguides. Opt Commun, 2005;252:46–51. https://doi.org/10.1016/j.optcom.2005.03.032.
     Google Scholar


Most read articles by the same author(s)