Ultrabroadband Rectangular Double Split Ring Based Perfect Solar Absorber


  •   Sara Telha

  •   Abella Bouaaddi

  •   Younes Achaoui

  •   Hicham Jakjoud


Metasurfaces could be very beneficial when elaborating solar cells to succeed in balancing between cost and efficiency. Thus, thin absorbers achieving high performance are attainable with the possibility to use any material. In this work, a perfect absorber based on a tungsten (W) metal-insulator-metal (MIM) metasurface is proposed. The MIM array consists of a rectangular double split ring resonator (RD-SRR) pattern with a specific set of parametric values that maximize the structure’s absorption. The study results in an ultrabroadband absorption over a minimum value of 97.02% and reaching a high peak of 99.9%. Its integrated absorption over the entire spectral solar at AM1.5 is 99.6%. This absorber fulfills efficiently solar devices’ requirements including the ability to work under high temperature conditions afforded by the use of tungsten.

Keywords: Metasurface, Perfect absorber, Solar light, Ultrabroadband absorption


Gangopadhyay U, Jana S, Das S. State of Art of Solar Photovoltaic Technology. Conf Pap Energy, 2013;2013:1-9. doi:10.1155/2013/764132.

Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ. Perfect Metamaterial Absorber. Phys Rev Lett., 2008;100(20):207402. doi:10.1103/PhysRevLett.100.207402.

Alaee R, Albooyeh M, Rockstuhl C. Theory of metasurface based perfect absorbers. J Phys D Appl Phys., 2017;50(50):503002. doi:10.1088/1361-6463/aa94a8.

Liang Q, Yu W, Zhao W, Wang T, Zhao J, Zhang H, et al. Numerical study of the meta-nanopyramid array as efficient solar energy absorber. Opt Mater Express. 2013;3(8):1187. doi:10.1364/OME.3.001187.

Cui Y, Fung KH, Xu J, Ma H, Jin Y, He S, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett., 2012;12(3):1443-1447. doi:10.1021/nl204118h.

Ji D, Song H, Zeng X, Hu H, Liu K, Zhang N, et al. Broadband absorption engineering of hyperbolic metafilm patterns. Sci Rep., 2015;4(1):4498. doi:10.1038/srep04498.

Vora A, Gwamuri J, Pala N, Kulkarni A, Pearce JM, Güney DÖ. Exchanging Ohmic Losses in Metamaterial Absorbers with Useful Optical Absorption for Photovoltaics. Sci Rep., 2015;4(1):4901. doi:10.1038/srep04901.

Ming X, Tan Q. Design Method of a Broadband Wide-Angle Plasmonic Absorber in the Visible Range. Plasmonics, 2017;12(1):117-124. doi:10.1007/s11468-016-0236-z.

Azad AK, Kort-Kamp WJM, Sykora M, Weisse-Bernstein NR, Luk TS, Taylor AJ, et al. Metasurface Broadband Solar Absorber. Sci Rep., 2016;6(1):20347. doi:10.1038/srep20347.

Liu X, Zhou J, Zhang H, Zhong H, Shang J, Liu Z. Ultra-thin Semiconductor/Metal Resonant Superabsorbers. Plasmonics, 2019;14(6):1427-1433. doi:10.1007/s11468-019-00931-y.

Nielsen MG, Pors A, Albrektsen O, Bozhevolnyi SI. Efficient absorption of visible radiation by gap plasmon resonators. Opt Express, 2012;20(12):13311. doi:10.1364/oe.20.013311.

Chen HT. Interference theory of metamaterial perfect absorbers. Opt Express, 2012;20(7):7165. doi:10.1364/OE.20.007165.

Zhou J, Liu X, Zhang H, Liu M, Yi Q, Liu Z, et al. Cross-Shaped Titanium Resonators Based Metasurface for Ultra-Broadband Solar Absorption. IEEE Photonics J., 2021;13(1). doi:10.1109/JPHOT.2021.3052990.

Aydin K, Ferry VE, Briggs RM, Atwater HA. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun., 2011;2(1):517. doi:10.1038/ncomms1528.

Khan AD, Rehman Q, Khan AD, Subhan FE, Noman M, Ahmed S, et al. Broadband solar energy absorption in plasmonic thin-film amorphous silicon solar cell. Coatings, 2019;9(10):1-9. doi:10.3390/coatings9100638.

Fang J, Zhang M, Zhang F, Yu H. Plasmonic sensor based on Fano resonance. Guangdian Gongcheng/Opto-Electronic Eng, 2017;44(2):221-225. doi:10.3969/j.issn.1003-501X.2017.02.012.

Guo W, Liu Y, Han T. Ultra-broadband infrared metasurface absorber. Opt Express, 2016;24(18). doi:10.1364/OE.24.020586.

Sang T, Gao J, Yin X, Qi H, Wang L, Jiao H. Angle-Insensitive Broadband Absorption Enhancement of Graphene Using a Multi-Grooved Metasurface. Nanoscale Res Lett., 2019;14(1):105. doi:10.1186/s11671-019-2937-7.

Bhattacharyya S, Vaibhav Srivastava K. Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator. J Appl Phys., 2014;115(6). doi:10.1063/1.4865273.

Tang J, Xiao Z, Xu K. Ultra-thin metamaterial absorber with extremely bandwidth for solar cell and sensing applications in visible region. Opt Mater (Amst), 2016;60:142-147. doi:10.1016/j.optmat.2016.07.023.

Schurig D, Mock JJ, Smith DR. Electric-field-coupled resonators for negative permittivity metamaterials. Appl Phys Lett., 2006;88(4):1-3. doi:10.1063/1.2166681.

Bilotti F, Nucci L, Vegni L. An SRR based microwave absorber. Microw Opt Technol Lett., 2006;48(11):2171-2175. doi:10.1002/mop.21891.

Tao H, Bingham CM, Pilon D, Fan K, Strikwerda AC, Shrekenhamer D, et al. A dual band terahertz metamaterial absorber. J Phys D Appl Phys, 2010;43(22):225102. doi:10.1088/0022-3727/43/22/225102.

Cheng Y, Du C. Broadband plasmonic absorber based on all silicon nanostructure resonators in visible region. Opt Mater (Amst), 2019;98(July):109441. doi:10.1016/j.optmat.2019.109441.

Yu P, Besteiro LV., Huang Y, Wu J, Fu L, Tan HH, et al. Broadband Metamaterial Absorbers. Adv Opt Mater, 2019;7(3):1800995. doi:10.1002/adom.201800995.

Rana AS, Mehmood MQ, Jeong H, Kim I, Rho J. Tungsten-based Ultrathin Absorber for Visible Regime. Sci Rep, 2018;8(1):2-9. doi:10.1038/s41598-018-20748-9.

Cheng Y, Xiong M, Chen M, Deng S, Liu H, Teng C, et al. Ultra-broadband perfect solar energy absorber based on tungsten ring arrays. Eng Res Express. 2021;3(4):045020. doi:10.1088/2631-8695/ac372f.

Zienkiewicz OC. The Finite Element Method in Engineering Science, McGraw-Hill; 1977.

Palik E. Handbook of Optical Constants of Solids. Academic Press; 1998.

Huang L, Chowdhury DR, Ramani S, Reiten MT, Luo SN, Taylor AJ, et al. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. Opt Lett., 2012;37(2):154. doi:10.1364/OL.37.000154.

Solar Spectral Irradiance: Air Mass 1.5 Spectra, American Society for Testing and Materials (ASTM), https://rredc.nrel.gov/solar//spectra/am1.5/.

Datta A, Zeng Z, Xu X. Split ring resonator as a nanoscale optical transducer for heat-assisted magnetic recording. Opt Express, 2019;27(20):28264. doi:10.1364/oe.27.028264.

Padilla WJ, Basov DN, Smith DR. Negative refractive index metamaterials. Mater Today, 2006;9(7-8):28-35. doi:10.1016/S1369-7021(06)71573-5.


How to Cite
Telha, S., Bouaaddi, A., Achaoui, Y., & Jakjoud, H. (2022). Ultrabroadband Rectangular Double Split Ring Based Perfect Solar Absorber. European Journal of Applied Physics, 4(3), 49–55. https://doi.org/10.24018/ejphysics.2022.4.3.177