Solar Radiant Heat Reflected on the Termination Shock Might Create Excess Microwave Radiation in the Horn Antenna (Thermal Telescope)
##plugins.themes.bootstrap3.article.main##
In this contribution, we model the Solar radiant heat as waves obeying the Stefan-Boltzmann law. The Solar radiant heat is reflected on the termination shock (TS) back towards to the Solar System. The geometry of the TS is known from the recent data of Voyager 1 and Voyager 2. This reflected radiant heat might create the observed excess microwave background (MB) in heated thermal telescopes (e.g., the Holmdel horn antenna). This model can be easily experimentally falsified in the spirit of Karl Popper by measuring the microwave background monopole, the microwave background dipole, and the small heat fluctuations coming from the sound waves in the TS shock and not uniform distribution of particles in the TS. This proposed experiment can be realized by the existing technology in the Solar System between the Sun and the termination shock.
References
-
Penzias AA, Wilson RW. A measurement of excess antenna temperature at 4080 Mc/s. The Astrophysical Journal, 1965;142:419-421.
Google Scholar
1
-
Dicke RH, Peebles PJE, Roll PG, Wilkinson DT. Cosmic black-body radiation. The Astrophysical Journal, 1965;142:414-419.
Google Scholar
2
-
Cosmic microwave background: Wikipedia. https://en.wikipedia.org/wiki/Cosmic_microwave_background Accesssed on May 18, 2022. Accessed on May 18, 2022.
Google Scholar
3
-
Assis AKT, Neves MCD. History of the 2.7 K temperature prior to Penzias and Wilson. Apeiron, 1995;2:79-84.
Google Scholar
4
-
Kragh H. Cosmology and controversy: the historical development of two theories of the Universe. Princeton, ISBN: 978-0-691-00546-1, 1999; page 338.
Google Scholar
5
-
Peebles PJE, Partridge RB. Finding the radiation from the Big Bang. 2007. http://staff.ustc.edu.cn/~wzhao7/c_index_files/main.files/CMBbook.pdf.
Google Scholar
6
-
Balbi A. The music of the big bang: the cosmic microwave background and the new cosmology. 2008; Springer, Berlin. ISBN: 978-3540787266.
Google Scholar
7
-
Durrer R. The cosmic microwave background: the history of its experimental investigation and its significance for cosmology. 2015; Arxiv: 1506.01907v1. Accessed on May 18, 2022.
Google Scholar
8
-
Kendrick O. “The lucky start toward today´s cosmology?”: Serendipity, the “big bang” theory and the science of radio noise in Cold War America. Historical Studies in the Natural Sciences, 2019;49(2):151-193.
Google Scholar
9
-
Durrer R. The cosmic microwave background. Cambridge University Press, 2nd edition. 2020; ISBN: 1107135222.
Google Scholar
10
-
Soares DSL. Local microwave background radiation. Arxiv: physics/0607096v5, 2014. Accessed on May 18, 2022.
Google Scholar
11
-
Fahr HJ, Sokaliwska M. Remaining problems in interpretation of the cosmic microwave background. Physics Research International, 2015; Article ID 503106, 15 pages.
Google Scholar
12
-
Ćirković MM, Perović S. Alternative explanations of the cosmic microwave background: a historical and an epistemological perspective. Studies in History and Philosophy of Science Pat B Studies and Philosophy of Modern Physics, 2017;62. doi:10.1016/j.shpsb.2017.04.005.
Google Scholar
13
-
Denisse JF, Le Roux E, Steinberg JL. Observations du rayonnement galactique sur la longueur d´onde de 33 cm. (Observations of the galactic radiation on the length wavelength of 33 cm). Comptes Rendus de l´Academie des Sciences, 1955;240:278-280.
Google Scholar
14
-
Shmaonov TA. Metodika absoljutnykh izmerenii effektivnoi temperatury radioizluchenija s nizkoi ekvivalentnoi temperaturoi. (A method of absolute measurement of the effective temperature of radio sources with low equivalent temperature). Pribory i Technika Eksperimenta, 1957;1:83-86.
Google Scholar
15
-
DeGrasse RW, Hogg DC, Ohm EA, Scovil HED. Ultra-low-noise measurements using a horn reflector antenna and a travelling-wave maser. Journal of Applied Physics, 1959;30:2013.
Google Scholar
16
-
Ohm EA. Receiving system. Bell System Technical Journal, 1961;40:1065-1094.
Google Scholar
17
-
Jakes WC. Participation of the Holmdel station in the Telstar project. Telstar I. NASA SP-32. 1963; 1421-1447.
Google Scholar
18
-
McComas DJ, Rankin JS, Schwadron NA, Swaczyna P. Termination shock measured by Voyagers and IBEX. The Astrophysical Journal, 2019;884:145-151.
Google Scholar
19
-
Smoot GF. Nobel lecture: cosmic microwave background radiation anisotropies: their discovery and utilization. Reviews of Modern Physics, 2007;79:1349-1379.
Google Scholar
20
-
Evans R. The Cosmic microwave background. How it changed our understanding of the Universe. 2015. Springer. Doi:10.1007/978-3-319-09928-6.
Google Scholar
21
-
Frolop A, Scott D. Pi in the sky. Arxiv: 1603.09703v2. Accessed on May 17, 2022.
Google Scholar
22
-
An D, Meissner KA, Nurowski P, Penrose R. Apparent evidence for Hawking points in the CMB sky. Arxiv: 1808.01740. Accessed on May 17, 2022.
Google Scholar
23
-
Jow DL, Scott D. Re-evaluating evidence for Hawking points in the CMB. Arxiv: 1909.09672v2. Accessed on May 17, 2022.
Google Scholar
24
-
Brush SG. The wave theory of heat: a forgotten stage in the transition from the caloric theory to thermodynamics. The British Journal for the History of Science, 1970;5(18):145-167.
Google Scholar
25
-
Stefan-Boltzmann law: Wikipedia https://en.wikipedia.org/wiki/Stefan%E2%80%93Boltzmann_law accessed on May 17, 2022.
Google Scholar
26
-
Linewear ChH. The CMB dipole: the most recent measurements and some history. 1996; Arxiv: astro-ph/9609034. Accessed on May 18, 2022.
Google Scholar
27
-
Mareš JJ. Do we know what the temperature is? Journal of Thermal Analysis and Calorimetry, 2015;120:223-230.
Google Scholar
28
-
Šesták J. Do we really know what temperature is: from Newton´s cooling law to an improved understanding of thermal analysis. Journal of Thermal Analysis and Calorimetry, 2020;142:913-926.
Google Scholar
29
-
Bormashenko E. What is temperature? Modern outlook on the concept of temperature. Entropy, 2020;22:1366.
Google Scholar
30
-
Kirchoff G. Ueber das Verhältniss zwischen dem Emissionsvermögen und der Absorptionsvermögen der Körper für Wärme und Licht (On the relation between the radiating and absorbing powers of bodies for heat and light). Annalen der Physik, 1860; 185(2): 275-301.
Google Scholar
31
Most read articles by the same author(s)
-
Jiří Stávek,
ChatGPT on the Einstein-Podolsky-Rosen Paradox , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
ChatGPT on the Gravitational Redshift , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jirí Stávek,
The Rutherford-Harkins-Landau-Chadwick Key–I. Introduction to Nuclear Chemistry , European Journal of Applied Physics: Vol. 7 No. 1 (2025) -
Jiří Stávek,
ChatGPT on the Cosmological Redshift and the Hubble Constant , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
The Newtonian Gravitational Constant G Interpreted as the Gravitational Inertia of Vacuum - G0. How to Arrange Twelve Precise Experimental Determinations of GZ in their Spread 500 ppm? , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
ChatGPT on the Mathematical Language in Physics , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
Spin Interpreted as the Angular Momentum Curvature, Electron g-factor Interpreted as the Ratio of Toroidal Torsion and Curvature, Unlocking of the Fixed Planck Constant h – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 1 (2021) -
Jiří Stávek,
A New Interpretation of Contributions Presented at the Solvay Conference 1911. Can We Falsify the “Geocentric” Foundations of Quantum Mechanics in the Solar System? , European Journal of Applied Physics: Vol. 3 No. 6 (2021) -
Jiří Stávek,
A New Interpretation of the Physical Color Theory Based on the Descartes´ Rotation Energy of Visible, Ultraviolet and Infrared Photons , European Journal of Applied Physics: Vol. 5 No. 5 (2023) -
Jiří Stávek,
The Rydberg Constant Interpreted as the Gaussian Curvature, Gauss-Bohr-de Broglie Model – Two Shadow Projections of the Helix, Unlocking of the Fixed Constant c of the Speed of Light – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 2 (2021)