Solar Radiant Heat Reflected on the Termination Shock Might Create Excess Microwave Radiation in the Horn Antenna (Thermal Telescope)


  •   Jiří Stávek


In this contribution, we model the Solar radiant heat as waves obeying the Stefan-Boltzmann law. The Solar radiant heat is reflected on the termination shock (TS) back towards to the Solar System. The geometry of the TS is known from the recent data of Voyager 1 and Voyager 2. This reflected radiant heat might create the observed excess microwave background (MB) in heated thermal telescopes (e.g., the Holmdel horn antenna). This model can be easily experimentally falsified in the spirit of Karl Popper by measuring the microwave background monopole, the microwave background dipole, and the small heat fluctuations coming from the sound waves in the TS shock and not uniform distribution of particles in the TS. This proposed experiment can be realized by the existing technology in the Solar System between the Sun and the termination shock.

Keywords: excess microwave background, fluctuations, MB dipole, MB monopole, Solar radiant heat, termination shock


Penzias AA, Wilson RW. A measurement of excess antenna temperature at 4080 Mc/s. The Astrophysical Journal, 1965;142:419-421.

Dicke RH, Peebles PJE, Roll PG, Wilkinson DT. Cosmic black-body radiation. The Astrophysical Journal, 1965;142:414-419.

Cosmic microwave background: Wikipedia. Accesssed on May 18, 2022. Accessed on May 18, 2022.

Assis AKT, Neves MCD. History of the 2.7 K temperature prior to Penzias and Wilson. Apeiron, 1995;2:79-84.

Kragh H. Cosmology and controversy: the historical development of two theories of the Universe. Princeton, ISBN: 978-0-691-00546-1, 1999; page 338.

Peebles PJE, Partridge RB. Finding the radiation from the Big Bang. 2007.

Balbi A. The music of the big bang: the cosmic microwave background and the new cosmology. 2008; Springer, Berlin. ISBN: 978-3540787266.

Durrer R. The cosmic microwave background: the history of its experimental investigation and its significance for cosmology. 2015; Arxiv: 1506.01907v1. Accessed on May 18, 2022.

Kendrick O. “The lucky start toward today´s cosmology?”: Serendipity, the “big bang” theory and the science of radio noise in Cold War America. Historical Studies in the Natural Sciences, 2019;49(2):151-193.

Durrer R. The cosmic microwave background. Cambridge University Press, 2nd edition. 2020; ISBN: 1107135222.

Soares DSL. Local microwave background radiation. Arxiv: physics/0607096v5, 2014. Accessed on May 18, 2022.

Fahr HJ, Sokaliwska M. Remaining problems in interpretation of the cosmic microwave background. Physics Research International, 2015; Article ID 503106, 15 pages.

Ćirković MM, Perović S. Alternative explanations of the cosmic microwave background: a historical and an epistemological perspective. Studies in History and Philosophy of Science Pat B Studies and Philosophy of Modern Physics, 2017;62. doi:10.1016/j.shpsb.2017.04.005.

Denisse JF, Le Roux E, Steinberg JL. Observations du rayonnement galactique sur la longueur d´onde de 33 cm. (Observations of the galactic radiation on the length wavelength of 33 cm). Comptes Rendus de l´Academie des Sciences, 1955;240:278-280.

Shmaonov TA. Metodika absoljutnykh izmerenii effektivnoi temperatury radioizluchenija s nizkoi ekvivalentnoi temperaturoi. (A method of absolute measurement of the effective temperature of radio sources with low equivalent temperature). Pribory i Technika Eksperimenta, 1957;1:83-86.

DeGrasse RW, Hogg DC, Ohm EA, Scovil HED. Ultra-low-noise measurements using a horn reflector antenna and a travelling-wave maser. Journal of Applied Physics, 1959;30:2013.

Ohm EA. Receiving system. Bell System Technical Journal, 1961;40:1065-1094.

Jakes WC. Participation of the Holmdel station in the Telstar project. Telstar I. NASA SP-32. 1963; 1421-1447.

McComas DJ, Rankin JS, Schwadron NA, Swaczyna P. Termination shock measured by Voyagers and IBEX. The Astrophysical Journal, 2019;884:145-151.

Smoot GF. Nobel lecture: cosmic microwave background radiation anisotropies: their discovery and utilization. Reviews of Modern Physics, 2007;79:1349-1379.

Evans R. The Cosmic microwave background. How it changed our understanding of the Universe. 2015. Springer. Doi:10.1007/978-3-319-09928-6.

Frolop A, Scott D. Pi in the sky. Arxiv: 1603.09703v2. Accessed on May 17, 2022.

An D, Meissner KA, Nurowski P, Penrose R. Apparent evidence for Hawking points in the CMB sky. Arxiv: 1808.01740. Accessed on May 17, 2022.

Jow DL, Scott D. Re-evaluating evidence for Hawking points in the CMB. Arxiv: 1909.09672v2. Accessed on May 17, 2022.

Brush SG. The wave theory of heat: a forgotten stage in the transition from the caloric theory to thermodynamics. The British Journal for the History of Science, 1970;5(18):145-167.

Stefan-Boltzmann law: Wikipedia accessed on May 17, 2022.

Linewear ChH. The CMB dipole: the most recent measurements and some history. 1996; Arxiv: astro-ph/9609034. Accessed on May 18, 2022.

Mareš JJ. Do we know what the temperature is? Journal of Thermal Analysis and Calorimetry, 2015;120:223-230.

Šesták J. Do we really know what temperature is: from Newton´s cooling law to an improved understanding of thermal analysis. Journal of Thermal Analysis and Calorimetry, 2020;142:913-926.

Bormashenko E. What is temperature? Modern outlook on the concept of temperature. Entropy, 2020;22:1366.

Kirchoff G. Ueber das Verhältniss zwischen dem Emissionsvermögen und der Absorptionsvermögen der Körper für Wärme und Licht (On the relation between the radiating and absorbing powers of bodies for heat and light). Annalen der Physik, 1860; 185(2): 275-301.


How to Cite
Stávek, J. (2022). Solar Radiant Heat Reflected on the Termination Shock Might Create Excess Microwave Radiation in the Horn Antenna (Thermal Telescope). European Journal of Applied Physics, 4(3), 38–42.

Most read articles by the same author(s)