##plugins.themes.bootstrap3.article.main##

For many physicists, Albert Einstein’s Theory of General Relativity is the top of Physics. A whole new concept, based on a flexible Space-Time Continuum. A wonderful New and Original insight in the Origins of Space and Time. But nowadays physics requires more than a fundamental theory about Space and Time.

The Mathematical foundation for a “Quantum Mechanical Model of the Black Hole” is based on a 10-dimensional Space-Time Continuum.  This article has been written in projections of a 10-Dimensional Space-Time Continuum within an easier to understand 4-Dimensional Space-Time Continuum. For that reason, this theory will not start with “Einstein’s famous Field Equations”,  but the start will be at a very fundamental concept in Physics. Isaac Newton’s 3rd law as a fundament in Classical-  and Quantum Mechanics.

To make the theory of the “Quantum Mechanical Model of the Black Hole” as much understandable as possible, this article starts with a short comprehension of the theory.

References

  1. Wheeler JA. Geons. Phys. Rev. 1955;97(2):511-526. DOI: 10.1103/PhysRev.97.511.
     Google Scholar
  2. Kang-Da Wu, Tulja Varun Kondra, Swapan Rana, Carlo Maria Scandolo, Guo-Yong Xiang, Chuan-Feng Li, Guang-Can Guo, and Alexander Streltsov. Operational Resource Theory of Imaginarity, Phys. Rev. Lett. 2021;126:090401.
     Google Scholar
  3. Minev Z. K., Mundhada S. O., Shankar S., Reinhold P., Gutiérrez-Jáuregui R., Schoelkopf R.J., Mirrahimi N., Carmichael H.J. and Devoret M. H. To catch and reverse a quantum jump mid-flight. Nature, 2019;570:200–204.
     Google Scholar
  4. Vegt J. W., Equilibrium beyond Einstein 4-Dimensional, Kaluza-Klein 5-Dimensional and Superstring 10- and 11 Dimensional Curved Hyperspaces. 03 June 2019.
     Google Scholar
  5. Stodolna A. S., Rouzée A., Lépine F., Cohen S., Robicheaux F., Gijsbertsen A., Jungmann J. H., Bordas C., and Vrakking M. J. J.. Hydrogen Atoms under Magnification: Direct Observation of the Nodal Structure of Stark States. Phys. Rev. Lett. 2013;110, 213001.
     Google Scholar
  6. IBM Blog Research; A new effect in electromagnetism discovered – 150 years later; https://phys.org/news/2017-10-effect-electromagnetism-years.html.
     Google Scholar
  7. Abuter R., Amorim A., Anugu N., Bauböck M., Benisty M., Berger J. P., Blind N., Bonnet H., Brandner W., Buron A., Collin C. Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astronomy & Astrophysics. arXiv:1807.09409 [astro-ph.GA]. DOI: https://doi.org/10.1051/0004-6361/201833718.
     Google Scholar
  8. Gurzadyan V.G., Stepanian A. Hubble tension vs two flows. Eur. Phys. J. Plus, 2021;136:235. https://doi.org/10.1140/epjp/s13360-021-01229-x.
     Google Scholar
  9. Hayley J., Macpherson et al. The trouble with Hubble: Local versus global expansion rates in inhomogeneous cosmological simulations with numerical relativity. The Astrophysical Journal Letters, 2018;865(1).
     Google Scholar
  10. Mc Clure M.L., Dyerb C.C. Anisotropy in the Hubble constant as observed in the HST extragalactic distance scale key project results. New Astronomy. Volume 12, Issue 7, October 2007, Pages 533-543 . https://doi.org/10.1016/j.newast.2007.03.005.
     Google Scholar
  11. Romano A. E. Hubble trouble or Hubble bubble? International Journal of Modern Physics, International Journal of Modern Physics DVol. 27, No. 09, 1850102 (2018). https://doi.org/10.1142/S021827181850102X.World.
     Google Scholar
  12. Kaya Ali. Hubble’s law and faster than light expansion speeds. American Journal of Physics, 2011;79:1151. https://doi.org/10.1119/1.3625871.
     Google Scholar
  13. Di Valentino E. et al. In the Realm of the Hubble tension − a Review of Solutions, Classical and Quantum Gravity. Classical and Quantum Gravity; Volume 38, Number 15. DOI: 10.1088/1361-6382/ac086d.
     Google Scholar
  14. Parnovsky S.L. Bias of the Hubble constant value caused by errors in galactic distance indicators. Ukr. J. Phys, arXiv:2109.09645v2 [astro-ph.CO]. https://arxiv.org/abs/2109.09645v2.
     Google Scholar
  15. Feeney S. M., Peiris H. V., Nissanke S. M., and Mortlock D. J. Prospects for Measuring the Hubble Constant with Neutron-Star–Black-Hole Mergers. Phys. Rev. Lett., 2021;126:171102.
     Google Scholar
  16. de Jaeger T., Stahl B. E., Zheng W., Filippenko A .V, Riess A. G., Galbany L. A measurement of the Hubble constant from Type II supernovae. Monthly Notices of the Royal Astronomical Society, 2020;496(3). https://doi.org/10.1093/mnras/staa1801.
     Google Scholar
  17. Freedman W. L. Measurements of the Hubble Constant: Tensions in Perspective. Department of Astronomy & Astrophysics & Kavli Institute for Cosmological Physics, University of Chicago, arxiv.org/pdf/2106.15656.pdf.
     Google Scholar
  18. Ziyu Shen, Wen-Bin Shen, Tengxu Zhang, Lin He, Zhan Cai, Xiaojuan Tian, Pengfei Zhang; An improved approach for testing gravitational redshift via satellite-based three frequency links combination. Advances in Space Research, 2021;68(7):2776-2790. ISSN 0273-1177. https://doi.org/10.1016/j.asr.2021.07.004.
     Google Scholar
  19. Licia Verde, Tommaso Treu and Adam G. Riess, Tensions between the early and late Universe. Nat Astron, 2019;3:891–895. https://doi.org/10.1038/s41550-019-0902-0.
     Google Scholar
  20. Ignacio Trujillo et al. A distance of 13 Mpc resolves the claimed anomalies of the galaxy lacking dark matter. Monthly Notices of the Royal Astronomical Society, 2019;486(1):1192–1219. DOI: https://doi.org/10.1093/mnras/stz771.
     Google Scholar
  21. Nandita Khetan et al. A new measurement of the Hubble constant using Type Ia supernovae calibrated with surface brightness fluctuations. Astronomy and Astrophysics, 2021;647. March, https://doi.org/10.1051/0004-6361/202039196.
     Google Scholar