Understanding Precipitate Growth Kinetics at Ultra-High Hydrostatic Pressures


  •   Siyua Cao

  •   Naveen Weerasekera

  •   Dawa Ram Shingdan

  •   Ahmed Ijaz Abdulla


In this work, we have studied the precipitate growth behavior of a metal matrix when subjected to hydrostatic pressure. We utilized Zenner-Frank phase field kinetics with integrated free energy density functional based on volumetric strain energy. We studied the precipitate growth up to 2 GPa under varying bulk modulus of the precipitate phase. We observed that subjecting to hydrostatic pressure influences the growth kinetics by reducing the precipitate growth under time evolution. In addition, the bulk modulus of the precipitate has shown an abnormality in the growth behavior compared to general observations under hydrostatic pressure. This work contributes to the smart tailoring of novel materials to reduce detrimental impacts on holistic material properties, used in large hydrostatic pressure applications.

Keywords: Free Energy Density Functionals, Phase Field Modeling, Precipitate Growth, Microstructure Evolution, Zenner-Frank Kinetics


Weerasekera N., Cao S., and Shingdon D. R. Phase Field Modeling of Ghost Diffusion in Sn-Ag-Cu Solder Joints. European Journal of Applied Physics, 2022; 4(2):28–34. doi: http://dx.doi.org/10.24018/ejphysics.2022.4.2.163.

Mukherjee R., Abinandanan T. A., and Gururajan M. P. Phase field study of precipitate growth: Effect of misfit strain and interface curvature. Acta Materialia, Aug. 2009;57(13):3947–3954. doi: 10.1016/j.actamat.2009.04.056.

Weerasekera N. and Abdulla A. Application of Zenner-Frank Phase Field Theory for Simulating Cu Depletion Effect in Isothermally Aged SAC BGA Solder Joints. International Journal of Scientific and Engineering Research, 2019;10(11):1210–1216.

Gomez H., Bures M., and Moure A. A review on computational modelling of phase-transition problems. Phil. Trans. R. Soc. A., Apr. 2019;377(2143):20180203. doi: 10.1098/rsta.2018.0203.

Yang M., Wang L., and Yan W. Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening. npj Comput Mater, Dec. 2021;7(1):56. doi: 10.1038/s41524-021-00524-6.

Jafari R. and Okutucu-Özyurt T. Phase-Field Modeling of Vapor Bubble Growth in a Microchannel. The Journal of Computational Multiphase Flows, Sep. 2015;7(3):143–158. doi: 10.1260/1757-482X.7.3.143.

Wang Q., Zhang G., Li Y., Hong Z., Wang D., and Shi S. Application of phase-field method in rechargeable batteries. npj Comput Mater, Dec. 2020;6(1):176. doi: 10.1038/s41524-020-00445-w.

Ohno M., Shibuta Y., and Takaki T. Multi-Phase-Field Modeling of Transformation Kinetics at Multiple Scales and Its Application to Welding of Steel. Mater. Trans., Feb. 2019;60(2):170–179. doi: 10.2320/matertrans.ME201711.

Weerasekera N., Cao S., and Biswas A. Issues in Resolution and Build Size Scaling of Additive Manufacturing Technologies. Open Science Journal, 2022;7(1):31. doi: 10.23954/osj.v7i1.3092.

Feng L., Zhong J., Zhu C., Wang J., An G., and Xiao R. Multi-phase field simulation of multi-grain peritectic transition in multiple phase transformation. China Foundry, Sep. 2020;17(5):357–363. doi: 10.1007/s41230-020-9136-0.

Weerasekera N. Particle Level Material Characterization of Neopentyl Glycol (NPG) For Intermediate Thermal Energy Storage. Presented at the Kentucky Regional Research Conference, Louisville, Kentucky, USA, Mar. 2021. doi: 10.13140/RG.2.2.32529.71520.

Chen L.-Q. Phase-Field Models for Microstructure Evolution. Annu. Rev. Mater. Res., Aug. 2002;32(1):113–140. doi: 10.1146/annurev.matsci.32.112001.132041.

Weerasekera N., Cao S., and Perera L. Functional Property Evaluation of Crystalline Materials using Density Functional Theory: A Review. EJPHYSICS, Jan. 2022;4(1):19–26. doi: 10.24018/ejphysics.2022.4.1.142.

Weerasekera N. D.and Laguerre A. Coupled Continuum Advection-Diffusion Model for Simulating Parallel Flow Induced Mass Transport in Porous Membranes. IJSR, 2019;8(12):694–700. doi: 10.21275/ART20203395.

Weerasekera N. D. and Cao S. Multifaceted Convergence Study for Evaluating Gas Diffusion Parameters of Polymeric Membranes. IJEAS, Nov. 2019;6(11). doi: 10.31873/IJEAS.6.11.21.

Aznar A. et al. Reversible and irreversible colossal barocaloric effects in plastic crystals. J. Mater. Chem. A, 2020;8(2). doi: 10.1039/C9TA10947A.

Baskakov A. G., Krishtal I. A., and Romanova E. Yu. Spectral analysis of a differential operator with an involution. J. Evol. Equ., Jun. 2017;17(2):669–684. doi: 10.1007/s00028-016-0332-8.

A. Rajabpour, L. Seidabadi, and M. Soltanpour. Calculating the Bulk Modulus of Iron and Steel Using Equilibrium Molecular Dynamics Simulation. Procedia Materials Science, 2015;11:391–396. doi: 10.1016/j.mspro.2015.11.005.


How to Cite
Cao, S., Weerasekera, N., Shingdan, D. R., & Abdulla, A. I. (2022). Understanding Precipitate Growth Kinetics at Ultra-High Hydrostatic Pressures. European Journal of Applied Physics, 4(3), 3–14. https://doi.org/10.24018/ejphysics.2022.4.3.169