##plugins.themes.bootstrap3.article.main##

In this work, we have studied the precipitate growth behavior of a metal matrix when subjected to hydrostatic pressure. We utilized Zenner-Frank phase field kinetics with integrated free energy density functional based on volumetric strain energy. We studied the precipitate growth up to 2 GPa under varying bulk modulus of the precipitate phase. We observed that subjecting to hydrostatic pressure influences the growth kinetics by reducing the precipitate growth under time evolution. In addition, the bulk modulus of the precipitate has shown an abnormality in the growth behavior compared to general observations under hydrostatic pressure. This work contributes to the smart tailoring of novel materials to reduce detrimental impacts on holistic material properties, used in large hydrostatic pressure applications.

References

  1. Weerasekera N., Cao S., and Shingdon D. R. Phase Field Modeling of Ghost Diffusion in Sn-Ag-Cu Solder Joints. European Journal of Applied Physics, 2022; 4(2):28–34. doi: http://dx.doi.org/10.24018/ejphysics.2022.4.2.163.
     Google Scholar
  2. Mukherjee R., Abinandanan T. A., and Gururajan M. P. Phase field study of precipitate growth: Effect of misfit strain and interface curvature. Acta Materialia, Aug. 2009;57(13):3947–3954. doi: 10.1016/j.actamat.2009.04.056.
     Google Scholar
  3. Weerasekera N. and Abdulla A. Application of Zenner-Frank Phase Field Theory for Simulating Cu Depletion Effect in Isothermally Aged SAC BGA Solder Joints. International Journal of Scientific and Engineering Research, 2019;10(11):1210–1216.
     Google Scholar
  4. Gomez H., Bures M., and Moure A. A review on computational modelling of phase-transition problems. Phil. Trans. R. Soc. A., Apr. 2019;377(2143):20180203. doi: 10.1098/rsta.2018.0203.
     Google Scholar
  5. Yang M., Wang L., and Yan W. Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening. npj Comput Mater, Dec. 2021;7(1):56. doi: 10.1038/s41524-021-00524-6.
     Google Scholar
  6. Jafari R. and Okutucu-Özyurt T. Phase-Field Modeling of Vapor Bubble Growth in a Microchannel. The Journal of Computational Multiphase Flows, Sep. 2015;7(3):143–158. doi: 10.1260/1757-482X.7.3.143.
     Google Scholar
  7. Wang Q., Zhang G., Li Y., Hong Z., Wang D., and Shi S. Application of phase-field method in rechargeable batteries. npj Comput Mater, Dec. 2020;6(1):176. doi: 10.1038/s41524-020-00445-w.
     Google Scholar
  8. Ohno M., Shibuta Y., and Takaki T. Multi-Phase-Field Modeling of Transformation Kinetics at Multiple Scales and Its Application to Welding of Steel. Mater. Trans., Feb. 2019;60(2):170–179. doi: 10.2320/matertrans.ME201711.
     Google Scholar
  9. Weerasekera N., Cao S., and Biswas A. Issues in Resolution and Build Size Scaling of Additive Manufacturing Technologies. Open Science Journal, 2022;7(1):31. doi: 10.23954/osj.v7i1.3092.
     Google Scholar
  10. Feng L., Zhong J., Zhu C., Wang J., An G., and Xiao R. Multi-phase field simulation of multi-grain peritectic transition in multiple phase transformation. China Foundry, Sep. 2020;17(5):357–363. doi: 10.1007/s41230-020-9136-0.
     Google Scholar
  11. Weerasekera N. Particle Level Material Characterization of Neopentyl Glycol (NPG) For Intermediate Thermal Energy Storage. Presented at the Kentucky Regional Research Conference, Louisville, Kentucky, USA, Mar. 2021. doi: 10.13140/RG.2.2.32529.71520.
     Google Scholar
  12. Chen L.-Q. Phase-Field Models for Microstructure Evolution. Annu. Rev. Mater. Res., Aug. 2002;32(1):113–140. doi: 10.1146/annurev.matsci.32.112001.132041.
     Google Scholar
  13. Weerasekera N., Cao S., and Perera L. Functional Property Evaluation of Crystalline Materials using Density Functional Theory: A Review. EJPHYSICS, Jan. 2022;4(1):19–26. doi: 10.24018/ejphysics.2022.4.1.142.
     Google Scholar
  14. Weerasekera N. D.and Laguerre A. Coupled Continuum Advection-Diffusion Model for Simulating Parallel Flow Induced Mass Transport in Porous Membranes. IJSR, 2019;8(12):694–700. doi: 10.21275/ART20203395.
     Google Scholar
  15. Weerasekera N. D. and Cao S. Multifaceted Convergence Study for Evaluating Gas Diffusion Parameters of Polymeric Membranes. IJEAS, Nov. 2019;6(11). doi: 10.31873/IJEAS.6.11.21.
     Google Scholar
  16. Aznar A. et al. Reversible and irreversible colossal barocaloric effects in plastic crystals. J. Mater. Chem. A, 2020;8(2). doi: 10.1039/C9TA10947A.
     Google Scholar
  17. Baskakov A. G., Krishtal I. A., and Romanova E. Yu. Spectral analysis of a differential operator with an involution. J. Evol. Equ., Jun. 2017;17(2):669–684. doi: 10.1007/s00028-016-0332-8.
     Google Scholar
  18. A. Rajabpour, L. Seidabadi, and M. Soltanpour. Calculating the Bulk Modulus of Iron and Steel Using Equilibrium Molecular Dynamics Simulation. Procedia Materials Science, 2015;11:391–396. doi: 10.1016/j.mspro.2015.11.005.
     Google Scholar