##plugins.themes.bootstrap3.article.main##

A series of simulations were conducted with Geant4 in order to verify the electron backscattering experiments performed by Tabata in the low Z elements of Be, C and Al. In general, a quite good agreement was obtained by carefully choosing the physics lists employed. These results invalidate the claim made before by Kirihara et al about the presence of experimental errors in Tabata’s work.

References

  1. Kim SH et al. Validation test of Geant4 simulation of electron backscattering. Arxiv. [Preprint] 2015. Available from: http://arxiv.org/abs/1502.01507 [physics.comp-ph] [Accessed 25th March 2022].
     Google Scholar
  2. Ali ESM, Rogers DWO. Energy spectra and angular distributions of charged particles backscattered from solid targets. J. Phys. D 2008; 41:055505. Online at stacks.iop.org/JPhysD/41/055505.
     Google Scholar
  3. Kahane Sylvian. Backscattered electrons spectra and angular distributions: Simulations with EGS5. EJERS 2018; 3(10):95-102. doi: 10.24018/ejers.2018.3.10.917.
     Google Scholar
  4. Tabata T. Backscattering of electrons from 3.2 to 14 MeV. Phys. Rev. 1967; 162:336-347. doi: 10.1103/PhysRev.162.336.
     Google Scholar
  5. Kirihara Y, Namito Y, Iwase H, Hirayama H. Monte Carlo simulation of Tabata’s electron backscattering experiments. NIMB 2010; 268:2384-2390. doi: 10.1016/j.nimb.2009.12.014.
     Google Scholar
  6. Wright KA, Trump JG. Back‐Scattering of megavolt electrons from thick targets. J. Appl. Phys. 1962; 33:687. doi: 10.1063/1.1702488.
     Google Scholar
  7. Nelson WR, Hirayama H, Rogers DWO. The EGS4 code system. Report SLAC-265, Stanford Linear Accelerator Center, Stanford, CA, 1985.
     Google Scholar
  8. Kawrakow I, Mainegra-Hing E, Rogers DWO, Tessier F, Walters BRB. The EGSnrc code system: Monte Carlo simulation of electron and photon transport. Technical Report PIRS–701, National Research Council of Canada, Ottawa, Canada 2021. Available https://nrc-cnrc.github.io/EGSnrc/doc/pirs701-egsnrc.pdf [Accessed 25th March 2022].
     Google Scholar
  9. Hirayama H, Namito Y, Bielajew AF, Wilderman SJ, Nelson WR. SLAC-R-730 and KEK Report 2005-8 2005. Available http://rcwww,kek.jp/research/egs5/egs5_source/egs5.160113.tar.gz [Accessed 25th March 2022].
     Google Scholar
  10. Benedito E, Fernandez-Varea JM, Salvat F. Mixed simulation of the multiple elastic scattering of electrons and positrons using partial-wave differential cross-sections. NIM B 2001; 174:91-110. doi: 10.1016/S0168-583X(00)00463-8.
     Google Scholar
  11. Salvat F, Jablonski A, Powell CJ. elsepa—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules. Comput. Phys. Commun. 2005; 165:157-190. doi: 10.1016/j.cpc.2004.09.006.
     Google Scholar
  12. Agostinelli S et al. Geant4—a simulation toolkit. NIMA 2003; 506:250-303. doi. 10.1016/S0168-9002(03)01368-8.
     Google Scholar
  13. Berger MJ, Wang R. Multiple-Scattering Angular Deflections and Energy-Loss Straggling. In: Jenkins, TM, Nelson WR, Rindi A. Eds. Monte Carlo Transport of Electrons and Photons. Ettore Majorana International Science Series, vol 38. Springer, Boston, MA., 1988. doi: 10.1007/978-1-4613-1059-4_2.
     Google Scholar
  14. Moliĕre G. Theorie der Streuung schneller geladener Teilchen II Mehrfach- und Vielfachstreuung. Z. Naturforsch 1948; 3a:78-97. German.
     Google Scholar
  15. Goudsmit S, Saunderson JL, Multiple scattering of electrons. Phys. Rev., 1940; 57:24-29. doi: 10.1103/PhysRev.57.24.
     Google Scholar
  16. Kawrakow I, Bielajew AF. On the condensed history technique for electron transport. NIMB 1998; 142:253-280. doi: 10.1016/S0168-583X(98)00274-2.
     Google Scholar
  17. Ivanchenko VN, Kadri O, Maire M, Urban L. Geant4 models for simulation of multiple scattering, J. Phys.: Conf. Ser. 2010; 219:032045. doi: 10.1088/1742-6596/219/3/032045.
     Google Scholar
  18. Urban L. A multiple scattering model in Geant4. Tech. Rep. CERN-OPEN-2006-077, CERN, Geneva Dec 2006. Available from: http://cds.cern.ch/record/1004190 [Accessed 28th March 2022].
     Google Scholar
  19. Wentzel G. Two remarks on the dispersion of corpuscular rays as a diffraction phenomenon. Z. Phys. 1926; 40(8):590-593. German. doi: 10.1007/BF01390457.
     Google Scholar
  20. Salvat F, Fernández-Varea JM, Sempau J. PENELOPE-2008: A code system for Monte Carlo simulation of electron and photon transport. Workshop Proceedings, NEA No. 6416, OECD, Paris, France, 2009.
     Google Scholar
  21. Heinrich KFJ. Electron probe micoanalysis by specimen current measurement. In: Proc. 4th Conf. on X-ray Optics and Microanalysis Academic Press 1966, pp. 159-167.
     Google Scholar
  22. Dondero P, Mantero A, Ivanchencko V, Lotti S, Mineo T, Fioretti V. Electron backscattering simulation in Geant4. NIMB 2018; 425:18-25. doi: 10.1016/j.nimb.2018.03.037.
     Google Scholar