The Planck Mass Density Radius of the Universe
##plugins.themes.bootstrap3.article.main##
What is the size of the universe if we take the estimated mass in the observable universe and compress it until we reach the Planck mass density? We will investigate this using both the Friedmann model and the recent Haug model of the universe that takes into account Lorentz relativistic mass. The resulting size is approximately that of a proton. We will also look at a hypothetical Planck mass size universe. In the Friedmann model one needs rapid expansion of mass to maintain the initial Planck mass density or, alternatively, only space expansion with the density decreasing from its initial conditions, while in the Haug model the Planck mass universe seems to cause no such “strange” predictions.
References
-
M. Planck. Natuerliche Masseinheiten. Der Koniglich Preussischen Akademie Der Wissenschaften, 1899.
Google Scholar
1
-
M. Planck. Vorlesungen uber die Theorie der W ¨ armestrahlung ¨. Leipzig: J.A. Barth, p. 163, see also the English translation “The Theory of Radiation” (1959) Dover, 1906.
Google Scholar
2
-
R. J. Adler. Six easy roads to the Planck scale. American Journal of Physics, 78(9):925, 2010. URL https://doi.org/10.1119/1.3439650.
Google Scholar
3
-
S. Hossenfelder. Can we measure structures to a precision better than the Planck length? Classical and Quantum Gravity, 29, 2012. URL https://doi.org/10.1088/0264-9381/29/11/115011.
Google Scholar
4
-
S. Hossenfelder. Minimal length scale scenarios for quantum gravity. Living Reviews in Relativity, 16, 2013. URL https://doi.org/10.12942/lrr-2013-2.
Google Scholar
5
-
G. M. Obermair. Primordial Planck mass black holes (PPMBHS) as candidates for dark matter? Journal of Physics, Conference Series, 442, 2013. URL https://doi.org/10.1088/1742-6596/442/1/012066.
Google Scholar
6
-
G. E. Gorelik and L. M. Ozernoi. The cosmic background radiation as a possible product of the quantum era in the expansion of the universe. Soviet Astronomy Letters, 4:85, 1978.
Google Scholar
7
-
E. R. Caianiello. Is there a maximal acceleration? Letter Nuovo Cimento, 32:65, 1981. URL https://doi.org/10.1007/BF02745135.
Google Scholar
8
-
G. Scarpetta. Letter Nuovo Cimento, 51, 1984.
Google Scholar
9
-
E. R. Caianiello, S. D. Filippo, G. Marco, and Vilasi. G. Remarks on the maxlmal-acceleration hypothesis. Letter Nuovo Cimento, 34:112, 1982.
Google Scholar
10
-
E. R. Caianiello and Landi G. Maximal acceleration and Sakharov’s limiting temperature. Letter Nuovo Cimento, 42:70, 1985.
Google Scholar
11
-
D. F. Falla and P. T. Landsberg. Black holes and limits on some physical quantities. European Journal of Physics, 15, 1994. URL https://doi.org/10.1088/0143-0807/15/4/008.
Google Scholar
12
-
G. Spavieri, M. Rodriguez, and A. Sanchez. Thought experiment discriminating special relativity from preferred frame theories. Journal of Physics Communications, 8(2):1, 2018. URL https://doi.org/10.1088/2399-6528/aad5fa.
Google Scholar
13
-
G. Spavieri, G. Gillies, G. Haug, and A. Sanchez. Light propagation and local speed in the linear Sagnac effect. Journal of Modern Optics, 26(21): 2131, 2019. URL https://doi.org/10.1080/09500340.2019.1695005.
Google Scholar
14
-
E. T Kipreos and R. S Balachandran. Optical data implies a null simultaneity test theory parameter in rotating frames. Modern Physics Letters A, 36: 2150131, 2021. URL https://doi.org/10.1142/S0217732321501315.
Google Scholar
15
-
E. R. Harrison. Fluctuations at the threshold of classical cosmology. Physical Review D, 1:2726, 1970. URL https://doi.org/10.1103/PhysRevD.1.2726.
Google Scholar
16
-
A. Einstein. Naherungsweise integration der feldgleichungen der gravitation. ¨ Sitzungsberichte der Koniglich Preussischen Akademie der Wissenschaften ¨ Berlin, 1916.
Google Scholar
17
-
A. Friedmann. Uber die kr ¨ ung des raumes. ¨ Zeitschrift fur Physik ¨, 10:377, 1922. https://doi.org/10.1007/BF01332580.
Google Scholar
18
-
B. Schutz. Gravity from the Ground Up. Cambridge University Press, 2003.
Google Scholar
19
-
M. P. Hobson, G. Efstathiou, and A. N. Lasenby. General Relativity, An Introduction for Physicists. Cambridge, 2014.
Google Scholar
20
-
M. Guidry. Modern General Relativity. Cambridge University Press, 2019. [22] Hoyle F. Proceedings of 11th Solvay Conference in Physics, 1958.
Google Scholar
21
-
Valev. D. Estimations of total mass and energy of the universe. Physics International, 5:15, 2014. URL https://arxiv.org/abs/1004.1035.
Google Scholar
22
-
E. G. Haug. A new full relativistic escape velocity and a new Hubble related equation for the universe. Physics Essays, 34(4):502, 2021a. URL http://dx.doi.org/10.4006/0836-1398-34.4.502.
Google Scholar
23
-
E. G. Haug. Unified quantum gravity field equation describing the universe from the smallest to the cosmological scales. Physics Essays, 35:61, 2022a. URL https://doi.org/10.4006/0836-1398-35.1.61.
Google Scholar
24
-
H. A. Lorentz. Simplified theory of electrical and optical phenomena in moving systems. Proc. Acad. Scientific, Amsterdam, 1, 1899.
Google Scholar
25
-
F. E. Trinkein. Modern Physics, Teacher’s Edition. Holt, Reinhart and Winston Inc., 1992.
Google Scholar
26
-
R. D’Inverno. Introducing Einstein’s Relativity. Oxford University Press, 1992.
Google Scholar
27
-
D. C Giancoli. Physics for Scientists & Engineers. Pearson Prentice Hall, New Jersey, 2009.
Google Scholar
28
-
P. A. Tipler and R. A. Llewellyn. Introducing Einstein’s Relativity. W. H. Freeman and Company, New York, 2012.
Google Scholar
29
-
J. S. Walker. Physics, Fourth Edition. Addison-Wesley, 2010.
Google Scholar
30
-
A. Einstein. On the electrodynamics of moving bodies. Annalen der Physik, English translation by George Barker Jeffery 1923, (17), 1905. URL https://doi.org/10.1002/andp.19053221004.
Google Scholar
31
-
H. Minkowski. Space and time. A Translation of an Address delivered at the 80th Assembly of German Natural Scientists and Physicians, at Cologne, 21 September, in the book “The Principle of Relativity”, Dover 1923, 1908.
Google Scholar
32
-
C. G. Adler. Dose mass really depends on velocity dad? American Journal of Physics, 55:739, 1987. URL https://doi.org/10.1119/1.15314.
Google Scholar
33
-
L. B. Okun. The concept of mass. Physics Today, 42, 1989. URL https://doi.org/10.1063/1.881171.
Google Scholar
34
-
E. F. Taylor and J. A. Wheeler. Spacetime Physics, Introduction to Special Relativity. W. H. Freeman and Company, New York, 1992.
Google Scholar
35
-
E. Hecht. Einstein never approved the relativistic mass formula. The Physics Teacher, 47:336, 2009. URL https://doi.org/10.1119/1.3204111.
Google Scholar
36
-
W. Rindler. Putting to rest mass misconseptions. Physics Today, 43:13, 1990. URL https://doi.org/10.1063/1.2810555.
Google Scholar
37
-
W. Rindler. Relativity, Special, General and Cosmology, Second Edition. Oxford University Press, 2001.
Google Scholar
38
-
M. Jammer. Concepts of Mass in Contemporary Physics and Philosophy. Princeton University Press, 2000.
Google Scholar
39
-
E. G. Haug. The gravitational constant and the Planck units. A simplification of the quantum realm. Physics Essays, 29(4):558, 2016a. URL https://doi.org/10.4006/0836-1398-29.4.558.
Google Scholar
40
-
E. G. Haug. Progress on composite view of Newtonian gravitational constant and its link to the Planck scale. Hal Archives, 2022b. URL https://hal.archivesouvertes.fr/hal-03591779/document.
Google Scholar
41
-
S. Mukherjee and et al. First measurement of the Hubble parameter from bright binary black hole gw190521. Astrophys J.Lett. 908 (2021) 2, 908, 2021. URL https://doi.org/10.3847/2041-8213/abe388.
Google Scholar
42
-
J. Soltis, S. Casertano, and A. G. ARiess. The parallax of ω Centauri measured from Gaia EDR3 and a direct, geometric calibration of the tip of the red giant branch and the hubble constant. The Astrophysical Journal Letters, 908(1), 2021. URL https://doi.org/10.3847/2041-8213/abdbad.
Google Scholar
43
-
E. G. Haug. Can the Planck length be found independent of big G? Applied Physics Research, 9(6):58, 2017. URL https://doi.org/10.5539/apr.v9n6p58.
Google Scholar
44
-
E. G. Haug. Finding the Planck length multiplied by the speed of light without any knowledge of G, c, or h, using a Newton force spring. Journal Physics Communication, 4:075001, 2020a. URL https://doi.org/10.1088/2399-6528/ab9dd7.
Google Scholar
45
-
E. G. Haug. Collision space-time: Unified quantum gravity. Physics Essays, 33(1):46, 2020b. URL https://doi.org/10.4006/0836-1398-33.1.46.
Google Scholar
46
-
E. G. Haug. Using a grandfather pendulum clock to measure the world’s shortest time interval, the Planck time (with zero knowledge of G). Journal of Applied Mathematics and Physics, 9:1076, 2021b. URL https://doi.org/10.4236/jamp.2021.95074.
Google Scholar
47
-
E. G. Haug. Measurements of the Planck length from a ball-clock without knowledge of Newton’s gravitational constant G or the Planck constant. European Journal of Applied Physics, 3:15, 2021c. URL https://www.ej-physics.org/index.php/ejphysics/article/view/133.
Google Scholar
48
-
O. L. Trinhammer and H. G. Bohr. On proton charge radius definition. EPL, 128:21001, 2019. URL https://doi.org/10.1209/0295-5075/128/21001.
Google Scholar
49
-
E. G. Haug. Lorentz relativistic mass makes dark energy superfluous? SSRN archive, Elsivier, 2022c. URL https://papers.ssrn.com/sol3/papers.cfm?abstractid = 4040118.
Google Scholar
50
-
E. G. Haug. Wormholes do not exist, they are mathematical artifacts from an incomplete gravitational theory (?). HAL archive, 2021d. URL https://hal.archives-ouvertes.fr/hal-03325115/document.
Google Scholar
51
-
E. G. Haug. Light-speed acceleration radius. Working paper Norwegian University of Life Sciences, HAL archive, 2021e. URL https://hal.archivesouvertes.fr/hal-03405539/document.
Google Scholar
52
-
A. S. Eddington. Report on the Relativity Theory of Gravitation. The Physical Society of London, Fleetway Press, London, 1918.
Google Scholar
53
-
M.A. Markov. Elementary particles of maximally large masses (quarks and maximons). Soviet Physics JPT, 24(3), 1967.
Google Scholar
54
-
S. Hawking. Gravitationally collapsed objects of very low mass. Monthly Notices of the Royal Astronomical Society, 152, 1971.
Google Scholar
55
-
L. Motz and J. Epstein. The gravitational charge 1/2 √ ¯hc as a unifying principle in physics. Il Nuovo Cimento, 51(1), 1979. URL https://doi.org/10.1007/BF02822327.
Google Scholar
56
-
E. G. Haug. The Planck mass particle finally discovered! Working paper Norwegian University of Life Sciences http://vixra.org/abs/1607.0496, 2016b.
Google Scholar
57
-
V. Faraoni. Three new roads to the Planck scale. American Journal of Physics, 85, 2017. URL https://aapt.scitation.org/doi/pdf/10.1119/1.4994804.
Google Scholar
58
Most read articles by the same author(s)
-
Espen G. Haug,
Measuring the Planck Length and the Speed of Gravity with a Newton Cradle and a Photogate , European Journal of Applied Physics: Vol. 5 No. 5 (2023)