How to Decipher the Seegers-Tisserand-Gerber-Einstein Formula and the Soldner-Einstein Formula?
Article Main Content
The famous Seegers-Tisserand-Gerber-Einstein Formula describing correctly the Mercury perihelion advance passed through hands of many scholars who tried to decipher the physical meaning of the perturbation factor Ω introduced by Carl Seegers in 1864. Based on the Gauss´s law for gravity we have newly interpreted this perturbation factor Ω as the active solid angle of the Solar gravitational field Ω = 3 steradians. We have inserted this model of the active solid angle of the Solar gravitational field the famous Soldner-Einstein Formula describing the light deflection in the vicinity of the Sun with 1 ≤ Ω ≤ 8. The enormous scatter of experimental data of the light deflections measured during the Solar eclipses was interpreted as the quantum jumps of the deflection angle with the quantum jump 0”.44. All known existing data on the light deflection taken during the last hundred years were depicted into the graphs. In some cases we have discovered these quantum jumps of the deflection angle during the individual runs of the Solar eclipse experiment. We propose to reanalyze all historical data taken for individual stars and to search for a hidden structure in these data. Moreover, we want to initiate new experimental activities for the coming Solar eclipses in order to collect more precise data that might guide us towards the model of quantum gravity.
References
-
Jaki SL. Johann Georg von Soldner and the gravitational bending of light, with an English translation of his essay on it published in 1801. Foundations of Physics. 1978;8:927-950.
Google Scholar
1
-
Ginoux JM. Albert Einstein and the doubling of the deflection of light. Foundations of Science. 2021; https://doi.org/10.1007/s10699-021-09783-4.
Google Scholar
2
-
Sauer T. Soldner, Einstein, gravitational light deflection and factors of two. Annalen der Physik. 2021; 533: 2100203. DOI: 10.1002/andp.202100203.
Google Scholar
3
-
Lotze KH, Simionato S. Henry Cavendish and the effect of gravity on propagation of light: postscript. Eur. Phys. J. H. 2021; 46:24. https://doi.org/10.1140/epjh/s13129-021-00027-4.
Google Scholar
4
-
Roseveare NT. Mercury´s perihelion From Le Verrier to Einstein. Oxford: Clarendon Press; 1982.
Google Scholar
5
-
Janssen M, Renn M. Einstein and the perihelion motion of Mercury. 2021; Arxiv: https://arxiv.org/abs/2111.11238.
Google Scholar
6
-
Seegers, C. De motu perturbationibusque planetarum secundum logem electrodynamicam Weberianam solem ambientum. Inaugural Diss. 1864; Göttingen. (On the motion and perturbations of the planets circling the Sun according to the electrodynamic law of Weber). Über die Bewegung und die Störungen der Planeten, wenn dieselben sich nach dem Weberschen elektrodynamischen Gesetz um die Sonne bewegen. Braunschweig: Vieweg & Sohn, 1924. Chapter 5.
Google Scholar
7
-
Tisserand F. Sur le mouvement des planètes autour du soleil, d´après la loi électrodynamique de Weber. (On the motion of planets around the Sun according to Weber´s electrodynamic law). Comptes Rendues de l´Academie des Sciences de Paris. 1872; 75: 760-763.
Google Scholar
8
-
Tisserand F. Sur les mouvements des planètes, en supposant l´attraction represéntée par l´une des lois électrodynamique de Gauss ou de Weber. (On the motion of planets when one supposes that the attraction is represented by either electrodynamical law of Gauss or that of Weber). Comptes Rendues de l´Academie des Sciences de Paris. 1890; 110: 313-315. (See also discussion in Reference [5], page 126).
Google Scholar
9
-
Gerber P. Die räumliche und zeitliche Ausbreitung der Gravitation. (The spatial and temporal propagation of gravity). Zeitschrift für Mathematik und Physik II. 1898; 43: 93-104.
Google Scholar
10
-
Einstein A. Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. (Explanation of the perihelion motion of Mercury from the general theory of relativity). Königlich Preussische Akademie der Wissenschaften (Berlin). Sitzungsberichte: 1915; 831-839.
Google Scholar
11
-
Will, CM. The confrontation between general relativity and experiment. Living Reviews in Relativity. 2014; 17: Article number 4.
Google Scholar
12
-
Einstein, E. Einfluss der Schwerkraft auf die Ausbreitung des Lichtes. (On the influence of gravitation on the propagation of light). Annalen der Physik. 1911; 4(35): 898-908.
Google Scholar
13
-
Wiechert, E. Die Gravitation als elektrodynamische Erscheinung. (Gravity as an electrodynamic phenomenon). Annalen der Physik. 1920; 63: 301-381, page 317.
Google Scholar
14
-
Nyambuya, G.G. A prediction of quantized gravitational deflection of starlight. Prespacetime Journal. 2016; 7(13): 1827-1833.
Google Scholar
15
-
Dyson FW, Eddington, A, Davidson, CR. A determination of the deflection of light by the Sun´s gravitational field, from observations made at the total eclipse of May 29, 1919. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Enginnering Sciences. 1920; 220: 291-333.
Google Scholar
16
-
Cambell, WW, Trumpler RJ. Observations on the deflection of light in passing through the Sun´s gravitational field. Lick Observateory Buletins. 1923; 11: 41-54.
Google Scholar
17
-
Chant, CA, Young, RK. Evidence of the bending of the rays of light on passing the Sun, obtained by the Canadian expedition to observe the Australian eclipse. Publications of the Dominion Astrophysical Observatory Victoria. 1923; 2: 275-285.
Google Scholar
18
-
Dodwell, GF, Davidson, CR. Determination of the deflection of light by the Sun´s gravitational field from observations made at Cardillo Downs, South Australia, during the total eclipse of 1922 September 21. Monthly Notices of the Royal Astronomical Society. 1924; 84: 150-162.
Google Scholar
19
-
Freundlich, E, von Klüber, H, von Brunn, A. Ergebnisse der Potsdamer Expedition zur Beobachtung der Sonnenfinsternis von 1929, Mai 9, in Takengon (Nordsumatra). (Results of the Potsdam´s expedition for the observation of the Solar eclipse on 1929, May 9, in Takengon (North Sumatra)). Zeitschrift für Astrophysik. 1931; 3: 171-198.
Google Scholar
20
-
Mikhailov, AA. The deflection of light by the gravitational field of the Sun (George Darwin Lecture). Monthly Notices of the Royal Astronomical Society. 1959; 119: 593-608.
Google Scholar
21
-
Matukuma, T. On the Einstein effect derived from the observations of the total Solar eclipse of June 19th in 1936. Japanese Journal of Astronomy and Geophysics. 1951; 18: 51-72.
Google Scholar
22
-
Van Biesbroeck, G. The Einstein shift at the eclipse of May 20, 1947, in Brazil. The Astronomical Journal. 1950; 55: 49-53.
Google Scholar
23
-
Van Biesbroeck, G. The relativity shift at the 1952 February 25 eclipse of the Sun. The Astronomical Journal. 1953; 58: 87-88.
Google Scholar
24
-
Schmeidler, F. Neuer Versuch einer Messung der relativistischer Lichtablenkung. (New attempt of a measurement of relativistic light deflection). Astronomische Nachrichten. 1963; 287 (1): 7-16.
Google Scholar
25
-
Schmeidler, F. Messung der Lichtablenkung während der Sonnenfinsternis am 15. Februar 1961. (Measurement of relativistic light deflection on February 15, 1961). Astronomische Nachrichten. 1985; 306 (2): 71-76.
Google Scholar
26
-
Jones, BF. Gravitational deflection of light: Solar eclipse of 30 June 1973. – 2 plate reductions. The Astronomical Journal. 1976; 81: 455-463.
Google Scholar
27
-
Bruns, DG. Gravitational starlight deflection measurements during the 21 August 2017 total Solar eclipse. Classical and Quantum Gravity. 2018; 35: 075009.
Google Scholar
28
-
Goldoni, E, Stefanini, L. A century of light-bending measurements: bringing Solar eclipse into the classroom. Physics Education. 2020; 55(4): 045009.
Google Scholar
29
-
Goldoni, E. Dataset of eclipses´measurements. https://github.com/emanueleg/eclipses.
Google Scholar
30
-
Treschmann, KJ. Early astronomical tests of general relativity: the gravitational deflection of light. Asian Journal of Physics. 2014; 23(1&2): 145-170.
Google Scholar
31
-
Roseveare NT. Mercury´s perihelion From Le Verrier to Einstein. Oxford: Clarendon Press; 1982. page 136.
Google Scholar
32
-
Einstein, A. Die Feldgleichungen der Gravitation. (The field equations of gravity). Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin. 1915; 844-847.
Google Scholar
33
-
Roseveare NT. Mercury´s perihelion From Le Verrier to Einstein. Oxford: Clarendon Press; 1982. page 143.
Google Scholar
34
Similar Articles
- Rajendra S. Prajapati, Origin of Gravity and Reason for General Theory of Relativity Passing All the Tests , European Journal of Applied Physics: Vol. 7 No. 2 (2025)
- Farhad Vedad, Modeling Gravitational Lensing: Analyzing Light Deflection Through a Curved Atmospheric Layer , European Journal of Applied Physics: Vol. 7 No. 2 (2025)
- Bharat Khushalani, New Energy Sources for Space Propulsion: Pioneering Beyond Chemical Limits , European Journal of Applied Physics: Vol. 7 No. 4 (2025)
- Kennedy Konga, Dismas Wamalwa, Dickson Mwenda, Daniel Maitethia, Probing Cosmic Expansion: The Cosmological Implications of Redshift , European Journal of Applied Physics: Vol. 7 No. 2 (2025)
- Reginald B. Little, Relativistic Chiral Inversion of Non-Zero Nuclear Magnetic Moments During Centrifugal Industrial Fermentative Processes , European Journal of Applied Physics: Vol. 5 No. 6 (2023)
- Jiří Stávek, ChatGPT on the Einstein-Podolsky-Rosen Paradox , European Journal of Applied Physics: Vol. 5 No. 6 (2023)
- Jiří Stávek, The Descartes Code (Spin Orbital Rotation of Photons)–II. The Gravitational Redshift , European Journal of Applied Physics: Vol. 6 No. 1 (2024)
- Jiří Stávek, The Newton-Stefan-Boltzmann-Planck Code. The Solar Microwave Background Formation on the Blackbody Sphere at the Distance R = 140 AU , European Journal of Applied Physics: Vol. 6 No. 2 (2024)
- Alex Ioskevich, Quantum Propulsion: Background and Practical Applications , European Journal of Applied Physics: Vol. 6 No. 2 (2024)
- Jiří Stávek, ChatGPT on the Mathematical Language in Physics , European Journal of Applied Physics: Vol. 5 No. 6 (2023)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
-
Jiří Stávek,
ChatGPT on the Einstein-Podolsky-Rosen Paradox , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
ChatGPT on the Gravitational Redshift , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jirí Stávek,
The Rutherford-Harkins-Landau-Chadwick Key–I. Introduction to Nuclear Chemistry , European Journal of Applied Physics: Vol. 7 No. 1 (2025) -
Jiří Stávek,
ChatGPT on the Cosmological Redshift and the Hubble Constant , European Journal of Applied Physics: Vol. 6 No. 1 (2024) -
Jiří Stávek,
ChatGPT on the Mathematical Language in Physics , European Journal of Applied Physics: Vol. 5 No. 6 (2023) -
Jiří Stávek,
The Newtonian Gravitational Constant G Interpreted as the Gravitational Inertia of Vacuum - G0. How to Arrange Twelve Precise Experimental Determinations of GZ in their Spread 500 ppm? , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
Spin Interpreted as the Angular Momentum Curvature, Electron g-factor Interpreted as the Ratio of Toroidal Torsion and Curvature, Unlocking of the Fixed Planck Constant h – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 1 (2021) -
Jiří Stávek,
The Rydberg Constant Interpreted as the Gaussian Curvature, Gauss-Bohr-de Broglie Model – Two Shadow Projections of the Helix, Unlocking of the Fixed Constant c of the Speed of Light – New Tests for Old Physics , European Journal of Applied Physics: Vol. 3 No. 2 (2021) -
Jiří Stávek,
A New Interpretation of the Physical Color Theory Based on the Descartes´ Rotation Energy of Visible, Ultraviolet and Infrared Photons , European Journal of Applied Physics: Vol. 5 No. 5 (2023) -
Jiří Stávek,
A New Interpretation of Contributions Presented at the Solvay Conference 1911. Can We Falsify the “Geocentric” Foundations of Quantum Mechanics in the Solar System? , European Journal of Applied Physics: Vol. 3 No. 6 (2021)