Independent researcher, Czech Republic
* Corresponding author

Article Main Content

The famous Seegers-Tisserand-Gerber-Einstein Formula describing correctly the Mercury perihelion advance passed through hands of many scholars who tried to decipher the physical meaning of the perturbation factor Ω introduced by Carl Seegers in 1864. Based on the Gauss´s law for gravity we have newly interpreted this perturbation factor Ω as the active solid angle of the Solar gravitational field Ω = 3 steradians. We have inserted this model of the active solid angle of the Solar gravitational field the famous Soldner-Einstein Formula describing the light deflection in the vicinity of the Sun with 1 ≤ Ω ≤ 8. The enormous scatter of experimental data of the light deflections measured during the Solar eclipses was interpreted as the quantum jumps of the deflection angle with the quantum jump 0”.44. All known existing data on the light deflection taken during the last hundred years were depicted into the graphs. In some cases we have discovered these quantum jumps of the deflection angle during the individual runs of the Solar eclipse experiment. We propose to reanalyze all historical data taken for individual stars and to search for a hidden structure in these data. Moreover, we want to initiate new experimental activities for the coming Solar eclipses in order to collect more precise data that might guide us towards the model of quantum gravity.

References

  1. Jaki SL. Johann Georg von Soldner and the gravitational bending of light, with an English translation of his essay on it published in 1801. Foundations of Physics. 1978;8:927-950.
     Google Scholar
  2. Ginoux JM. Albert Einstein and the doubling of the deflection of light. Foundations of Science. 2021; https://doi.org/10.1007/s10699-021-09783-4.
     Google Scholar
  3. Sauer T. Soldner, Einstein, gravitational light deflection and factors of two. Annalen der Physik. 2021; 533: 2100203. DOI: 10.1002/andp.202100203.
     Google Scholar
  4. Lotze KH, Simionato S. Henry Cavendish and the effect of gravity on propagation of light: postscript. Eur. Phys. J. H. 2021; 46:24. https://doi.org/10.1140/epjh/s13129-021-00027-4.
     Google Scholar
  5. Roseveare NT. Mercury´s perihelion From Le Verrier to Einstein. Oxford: Clarendon Press; 1982.
     Google Scholar
  6. Janssen M, Renn M. Einstein and the perihelion motion of Mercury. 2021; Arxiv: https://arxiv.org/abs/2111.11238.
     Google Scholar
  7. Seegers, C. De motu perturbationibusque planetarum secundum logem electrodynamicam Weberianam solem ambientum. Inaugural Diss. 1864; Göttingen. (On the motion and perturbations of the planets circling the Sun according to the electrodynamic law of Weber). Über die Bewegung und die Störungen der Planeten, wenn dieselben sich nach dem Weberschen elektrodynamischen Gesetz um die Sonne bewegen. Braunschweig: Vieweg & Sohn, 1924. Chapter 5.
     Google Scholar
  8. Tisserand F. Sur le mouvement des planètes autour du soleil, d´après la loi électrodynamique de Weber. (On the motion of planets around the Sun according to Weber´s electrodynamic law). Comptes Rendues de l´Academie des Sciences de Paris. 1872; 75: 760-763.
     Google Scholar
  9. Tisserand F. Sur les mouvements des planètes, en supposant l´attraction represéntée par l´une des lois électrodynamique de Gauss ou de Weber. (On the motion of planets when one supposes that the attraction is represented by either electrodynamical law of Gauss or that of Weber). Comptes Rendues de l´Academie des Sciences de Paris. 1890; 110: 313-315. (See also discussion in Reference [5], page 126).
     Google Scholar
  10. Gerber P. Die räumliche und zeitliche Ausbreitung der Gravitation. (The spatial and temporal propagation of gravity). Zeitschrift für Mathematik und Physik II. 1898; 43: 93-104.
     Google Scholar
  11. Einstein A. Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. (Explanation of the perihelion motion of Mercury from the general theory of relativity). Königlich Preussische Akademie der Wissenschaften (Berlin). Sitzungsberichte: 1915; 831-839.
     Google Scholar
  12. Will, CM. The confrontation between general relativity and experiment. Living Reviews in Relativity. 2014; 17: Article number 4.
     Google Scholar
  13. Einstein, E. Einfluss der Schwerkraft auf die Ausbreitung des Lichtes. (On the influence of gravitation on the propagation of light). Annalen der Physik. 1911; 4(35): 898-908.
     Google Scholar
  14. Wiechert, E. Die Gravitation als elektrodynamische Erscheinung. (Gravity as an electrodynamic phenomenon). Annalen der Physik. 1920; 63: 301-381, page 317.
     Google Scholar
  15. Nyambuya, G.G. A prediction of quantized gravitational deflection of starlight. Prespacetime Journal. 2016; 7(13): 1827-1833.
     Google Scholar
  16. Dyson FW, Eddington, A, Davidson, CR. A determination of the deflection of light by the Sun´s gravitational field, from observations made at the total eclipse of May 29, 1919. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Enginnering Sciences. 1920; 220: 291-333.
     Google Scholar
  17. Cambell, WW, Trumpler RJ. Observations on the deflection of light in passing through the Sun´s gravitational field. Lick Observateory Buletins. 1923; 11: 41-54.
     Google Scholar
  18. Chant, CA, Young, RK. Evidence of the bending of the rays of light on passing the Sun, obtained by the Canadian expedition to observe the Australian eclipse. Publications of the Dominion Astrophysical Observatory Victoria. 1923; 2: 275-285.
     Google Scholar
  19. Dodwell, GF, Davidson, CR. Determination of the deflection of light by the Sun´s gravitational field from observations made at Cardillo Downs, South Australia, during the total eclipse of 1922 September 21. Monthly Notices of the Royal Astronomical Society. 1924; 84: 150-162.
     Google Scholar
  20. Freundlich, E, von Klüber, H, von Brunn, A. Ergebnisse der Potsdamer Expedition zur Beobachtung der Sonnenfinsternis von 1929, Mai 9, in Takengon (Nordsumatra). (Results of the Potsdam´s expedition for the observation of the Solar eclipse on 1929, May 9, in Takengon (North Sumatra)). Zeitschrift für Astrophysik. 1931; 3: 171-198.
     Google Scholar
  21. Mikhailov, AA. The deflection of light by the gravitational field of the Sun (George Darwin Lecture). Monthly Notices of the Royal Astronomical Society. 1959; 119: 593-608.
     Google Scholar
  22. Matukuma, T. On the Einstein effect derived from the observations of the total Solar eclipse of June 19th in 1936. Japanese Journal of Astronomy and Geophysics. 1951; 18: 51-72.
     Google Scholar
  23. Van Biesbroeck, G. The Einstein shift at the eclipse of May 20, 1947, in Brazil. The Astronomical Journal. 1950; 55: 49-53.
     Google Scholar
  24. Van Biesbroeck, G. The relativity shift at the 1952 February 25 eclipse of the Sun. The Astronomical Journal. 1953; 58: 87-88.
     Google Scholar
  25. Schmeidler, F. Neuer Versuch einer Messung der relativistischer Lichtablenkung. (New attempt of a measurement of relativistic light deflection). Astronomische Nachrichten. 1963; 287 (1): 7-16.
     Google Scholar
  26. Schmeidler, F. Messung der Lichtablenkung während der Sonnenfinsternis am 15. Februar 1961. (Measurement of relativistic light deflection on February 15, 1961). Astronomische Nachrichten. 1985; 306 (2): 71-76.
     Google Scholar
  27. Jones, BF. Gravitational deflection of light: Solar eclipse of 30 June 1973. – 2 plate reductions. The Astronomical Journal. 1976; 81: 455-463.
     Google Scholar
  28. Bruns, DG. Gravitational starlight deflection measurements during the 21 August 2017 total Solar eclipse. Classical and Quantum Gravity. 2018; 35: 075009.
     Google Scholar
  29. Goldoni, E, Stefanini, L. A century of light-bending measurements: bringing Solar eclipse into the classroom. Physics Education. 2020; 55(4): 045009.
     Google Scholar
  30. Goldoni, E. Dataset of eclipses´measurements. https://github.com/emanueleg/eclipses.
     Google Scholar
  31. Treschmann, KJ. Early astronomical tests of general relativity: the gravitational deflection of light. Asian Journal of Physics. 2014; 23(1&2): 145-170.
     Google Scholar
  32. Roseveare NT. Mercury´s perihelion From Le Verrier to Einstein. Oxford: Clarendon Press; 1982. page 136.
     Google Scholar
  33. Einstein, A. Die Feldgleichungen der Gravitation. (The field equations of gravity). Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin. 1915; 844-847.
     Google Scholar
  34. Roseveare NT. Mercury´s perihelion From Le Verrier to Einstein. Oxford: Clarendon Press; 1982. page 143.
     Google Scholar


Similar Articles

1-10 of 100

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 > >>