How to Decipher the Seegers-Tisserand-Gerber-Einstein Formula and the Soldner-Einstein Formula?

##plugins.themes.bootstrap3.article.main##

  •   Jiří Stávek

Abstract

The famous Seegers-Tisserand-Gerber-Einstein Formula describing correctly the Mercury perihelion advance passed through hands of many scholars who tried to decipher the physical meaning of the perturbation factor Ω introduced by Carl Seegers in 1864. Based on the Gauss´s law for gravity we have newly interpreted this perturbation factor Ω as the active solid angle of the Solar gravitational field Ω = 3 steradians. We have inserted this model of the active solid angle of the Solar gravitational field the famous Soldner-Einstein Formula describing the light deflection in the vicinity of the Sun with 1 ≤ Ω ≤ 8. The enormous scatter of experimental data of the light deflections measured during the Solar eclipses was interpreted as the quantum jumps of the deflection angle with the quantum jump 0”.44. All known existing data on the light deflection taken during the last hundred years were depicted into the graphs. In some cases we have discovered these quantum jumps of the deflection angle during the individual runs of the Solar eclipse experiment. We propose to reanalyze all historical data taken for individual stars and to search for a hidden structure in these data. Moreover, we want to initiate new experimental activities for the coming Solar eclipses in order to collect more precise data that might guide us towards the model of quantum gravity.


Keywords: Active solid angle, light deflection, Mercury perihelion advance, quantum gravity, quantum jumps

References

Jaki SL. Johann Georg von Soldner and the gravitational bending of light, with an English translation of his essay on it published in 1801. Foundations of Physics. 1978;8:927-950.

Ginoux JM. Albert Einstein and the doubling of the deflection of light. Foundations of Science. 2021; https://doi.org/10.1007/s10699-021-09783-4.

Sauer T. Soldner, Einstein, gravitational light deflection and factors of two. Annalen der Physik. 2021; 533: 2100203. DOI: 10.1002/andp.202100203.

Lotze KH, Simionato S. Henry Cavendish and the effect of gravity on propagation of light: postscript. Eur. Phys. J. H. 2021; 46:24. https://doi.org/10.1140/epjh/s13129-021-00027-4.

Roseveare NT. Mercury´s perihelion From Le Verrier to Einstein. Oxford: Clarendon Press; 1982.

Janssen M, Renn M. Einstein and the perihelion motion of Mercury. 2021; Arxiv: https://arxiv.org/abs/2111.11238.

Seegers, C. De motu perturbationibusque planetarum secundum logem electrodynamicam Weberianam solem ambientum. Inaugural Diss. 1864; Göttingen. (On the motion and perturbations of the planets circling the Sun according to the electrodynamic law of Weber). Über die Bewegung und die Störungen der Planeten, wenn dieselben sich nach dem Weberschen elektrodynamischen Gesetz um die Sonne bewegen. Braunschweig: Vieweg & Sohn, 1924. Chapter 5.

Tisserand F. Sur le mouvement des planètes autour du soleil, d´après la loi électrodynamique de Weber. (On the motion of planets around the Sun according to Weber´s electrodynamic law). Comptes Rendues de l´Academie des Sciences de Paris. 1872; 75: 760-763.

Tisserand F. Sur les mouvements des planètes, en supposant l´attraction represéntée par l´une des lois électrodynamique de Gauss ou de Weber. (On the motion of planets when one supposes that the attraction is represented by either electrodynamical law of Gauss or that of Weber). Comptes Rendues de l´Academie des Sciences de Paris. 1890; 110: 313-315. (See also discussion in Reference [5], page 126).

Gerber P. Die räumliche und zeitliche Ausbreitung der Gravitation. (The spatial and temporal propagation of gravity). Zeitschrift für Mathematik und Physik II. 1898; 43: 93-104.

Einstein A. Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. (Explanation of the perihelion motion of Mercury from the general theory of relativity). Königlich Preussische Akademie der Wissenschaften (Berlin). Sitzungsberichte: 1915; 831-839.

Will, CM. The confrontation between general relativity and experiment. Living Reviews in Relativity. 2014; 17: Article number 4.

Einstein, E. Einfluss der Schwerkraft auf die Ausbreitung des Lichtes. (On the influence of gravitation on the propagation of light). Annalen der Physik. 1911; 4(35): 898-908.

Wiechert, E. Die Gravitation als elektrodynamische Erscheinung. (Gravity as an electrodynamic phenomenon). Annalen der Physik. 1920; 63: 301-381, page 317.

Nyambuya, G.G. A prediction of quantized gravitational deflection of starlight. Prespacetime Journal. 2016; 7(13): 1827-1833.

Dyson FW, Eddington, A, Davidson, CR. A determination of the deflection of light by the Sun´s gravitational field, from observations made at the total eclipse of May 29, 1919. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Enginnering Sciences. 1920; 220: 291-333.

Cambell, WW, Trumpler RJ. Observations on the deflection of light in passing through the Sun´s gravitational field. Lick Observateory Buletins. 1923; 11: 41-54.

Chant, CA, Young, RK. Evidence of the bending of the rays of light on passing the Sun, obtained by the Canadian expedition to observe the Australian eclipse. Publications of the Dominion Astrophysical Observatory Victoria. 1923; 2: 275-285.

Dodwell, GF, Davidson, CR. Determination of the deflection of light by the Sun´s gravitational field from observations made at Cardillo Downs, South Australia, during the total eclipse of 1922 September 21. Monthly Notices of the Royal Astronomical Society. 1924; 84: 150-162.

Freundlich, E, von Klüber, H, von Brunn, A. Ergebnisse der Potsdamer Expedition zur Beobachtung der Sonnenfinsternis von 1929, Mai 9, in Takengon (Nordsumatra). (Results of the Potsdam´s expedition for the observation of the Solar eclipse on 1929, May 9, in Takengon (North Sumatra)). Zeitschrift für Astrophysik. 1931; 3: 171-198.

Mikhailov, AA. The deflection of light by the gravitational field of the Sun (George Darwin Lecture). Monthly Notices of the Royal Astronomical Society. 1959; 119: 593-608.

Matukuma, T. On the Einstein effect derived from the observations of the total Solar eclipse of June 19th in 1936. Japanese Journal of Astronomy and Geophysics. 1951; 18: 51-72.

Van Biesbroeck, G. The Einstein shift at the eclipse of May 20, 1947, in Brazil. The Astronomical Journal. 1950; 55: 49-53.

Van Biesbroeck, G. The relativity shift at the 1952 February 25 eclipse of the Sun. The Astronomical Journal. 1953; 58: 87-88.

Schmeidler, F. Neuer Versuch einer Messung der relativistischer Lichtablenkung. (New attempt of a measurement of relativistic light deflection). Astronomische Nachrichten. 1963; 287 (1): 7-16.

Schmeidler, F. Messung der Lichtablenkung während der Sonnenfinsternis am 15. Februar 1961. (Measurement of relativistic light deflection on February 15, 1961). Astronomische Nachrichten. 1985; 306 (2): 71-76.

Jones, BF. Gravitational deflection of light: Solar eclipse of 30 June 1973. – 2 plate reductions. The Astronomical Journal. 1976; 81: 455-463.

Bruns, DG. Gravitational starlight deflection measurements during the 21 August 2017 total Solar eclipse. Classical and Quantum Gravity. 2018; 35: 075009.

Goldoni, E, Stefanini, L. A century of light-bending measurements: bringing Solar eclipse into the classroom. Physics Education. 2020; 55(4): 045009.

Goldoni, E. Dataset of eclipses´measurements. https://github.com/emanueleg/eclipses.

Treschmann, KJ. Early astronomical tests of general relativity: the gravitational deflection of light. Asian Journal of Physics. 2014; 23(1&2): 145-170.

Roseveare NT. Mercury´s perihelion From Le Verrier to Einstein. Oxford: Clarendon Press; 1982. page 136.

Einstein, A. Die Feldgleichungen der Gravitation. (The field equations of gravity). Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin. 1915; 844-847.

Roseveare NT. Mercury´s perihelion From Le Verrier to Einstein. Oxford: Clarendon Press; 1982. page 143.

##plugins.themes.bootstrap3.article.details##

How to Cite
Stávek, J. (2022). How to Decipher the Seegers-Tisserand-Gerber-Einstein Formula and the Soldner-Einstein Formula?. European Journal of Applied Physics, 4(1), 1-10. https://doi.org/10.24018/ejphysics.2022.4.1.143