Functional Property Evaluation of Crystalline Materials using Density Functional Theory: A Review
Article Main Content
In this paper, utilization of density functional theory (DFT) to obtain mechanical, electrical and thermal properties of crystalline materials are reviewed. DFT has resulted as an efficient tool for predicting ground states of many body systems thus aiding in resolving dispersion spectrums of complex atomic arrangements where solution by traditional Schr dinger (SH) equation is infeasible. Great success has been reported by previous researchers on utilizing DFT for functional property predictions of crystalline solids.
References
- 
		                                    
			                                    H. Ma, Y. Ma, and Z. Tian. Simple Theoretical Model for Thermal Conductivity of Crystalline Polymers. ACS Appl. Polym. Mater., Oct. 2019;1(10):2566–2570. doi: 10.1021/acsapm.9b00605. 
                                                
                                                
Google Scholar
                                                                                  1 
		                                		                                 - 
		                                    
			                                    N. A. Mohd Radzuan, A. B. Sulong, and J. Sahari. A review of electrical conductivity models for conductive polymer composite. Int. J. Hydrog. Energy, Apr. 2017;42(14):9262–9273. doi: 10.1016/j.ijhydene.2016.03.045. 
                                                
                                                
Google Scholar
                                                                                  2 
		                                		                                 - 
		                                    
			                                    F. Willems and C. Bonten. Prediction of the mechanical properties of long fiber reinforced thermoplastics. Mallorca, Spain, 2020, p. 020066. doi: 10.1063/5.0028790. 
                                                
                                                
Google Scholar
                                                                                  3 
		                                		                                 - 
		                                    
			                                    P. E. Hopkins, M. Ding, and J. Poon. Contributions of electron and phonon transport to the thermal conductivity of GdFeCo and TbFeCo amorphous rare-earth transition-metal alloys. J. Appl. Phys., May 2012;111(10):103533, doi: 10.1063/1.4722231. 
                                                
                                                
Google Scholar
                                                                                  4 
		                                		                                 - 
		                                    
			                                    Eisberg, Robert Martin. Quantum physics of atoms, molecules, solids, nuclei, and particles. Wiley, 1985. 
                                                
                                                
Google Scholar
                                                                                  5 
		                                		                                 - 
		                                    
			                                    K. Pal, S. Anand, and U. V. Waghmare. Thermoelectric properties of materials with nontrivial electronic topology. J. Mater. Chem. C, 2015;3(46):12130–12139. doi: 10.1039/C5TC02344K. 
                                                
                                                
Google Scholar
                                                                                  6 
		                                		                                 - 
		                                    
			                                    N. M. Harrison. An Introduction to Density Functional Theory, p. 26. 
                                                
                                                
Google Scholar
                                                                                  7 
		                                		                                 - 
		                                    
			                                    E. Kiely, R. Zwane, R. Fox, A. M. Reilly, and S. Guerin. Density functional theory predictions of the mechanical properties of crystalline materials. CrystEngComm, 2021;23(34):5697–5710. doi: 10.1039/D1CE00453K. 
                                                
                                                
Google Scholar
                                                                                  8 
		                                		                                 - 
		                                    
			                                    A. Fereidoon, M. Ghorbanzadeh Ahangari, M. D. Ganji, and M. Jahanshahi. Density functional theory investigation of the mechanical properties of single-walled carbon nanotubes. Comput. Mater. Sci., Feb. 2012;53(1):377–381. doi: 10.1016/j.commatsci.2011.08.007. 
                                                
                                                
Google Scholar
                                                                                  9 
		                                		                                 - 
		                                    
			                                    S. Ajori. A density functional study on the mechanical properties of metal-free two dimensional polymer graphitic Carbon Nitride, Int.L. of Nano Dimensions, 2017;8(3), 234-240. 
                                                
                                                
Google Scholar
                                                                                  10 
		                                		                                 - 
		                                    
			                                    M. X. Chen and R. Podloucky. Electronic thermal conductivity as derived by density functional theory. Phys. Rev. B, Jul. 2013;88(4):045134. doi: 10.1103/PhysRevB.88.045134. 
                                                
                                                
Google Scholar
                                                                                  11 
		                                		                                 - 
		                                    
			                                    P. L. Silvestrelli, A. Alavi, and M. Parrinello. Electrical-conductivity calculation in ab initio simulations of metals:Application to liquid sodium. Phys. Rev. B, Jun. 1997;55(23):15515–15522. doi: 10.1103/PhysRevB.55.15515. 
                                                
                                                
Google Scholar
                                                                                  12 
		                                		                                 - 
		                                    
			                                    J. Bardeen. Electrical Conductivity of Metals. J. Appl. Phys., 1940;11:25. 
                                                
                                                
Google Scholar
                                                                                  13 
		                                		                                 - 
		                                    
			                                    J. I. Ranasinghe, L. Malakkal, E. Jossou, B. Szpunar, and J. A. Szpunar. Density functional theory study of the structural, mechanical and thermal conductivity of uranium dialuminide (UAl2). J. Nucl. Mater., Nov. 2020;540:152359. doi: 10.1016/j.jnucmat.2020.152359. 
                                                
                                                
Google Scholar
                                                                                  14 
		                                		                                 - 
		                                    
			                                    K. A. Baseden and J. W. Tye. Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom. J. Chem. Educ., Dec. 2014;91(12):2116–2123. doi: 10.1021/ed5004788. 
                                                
                                                
Google Scholar
                                                                                  15 
		                                		                                 - 
		                                    
			                                    P. Borlido, J. Doumont, F. Tran, M. A. L. Marques, and S. Botti. Validation of Pseudopotential Calculations for the Electronic Band Gap of Solids. J. Chem. Theory Comput., Jun. 2020;16(6):3620–3627. doi: 10.1021/acs.jctc.0c00214. 
                                                
                                                
Google Scholar
                                                                                  16 
		                                		                                 - 
		                                    
			                                    G. Aulakh. An overview of density functional theory based codes used for ab initio calculations, p. 10. 
                                                
                                                
Google Scholar
                                                                                  17 
		                                		                                 - 
		                                    
			                                    K. Burke, R. Car, and R. Gebauer. Density Functional Theory of the Electrical Conductivity of Molecular Devices. Phys. Rev. Lett., Apr. 2005;94(14):146803. doi: 10.1103/PhysRevLett.94.146803. 
                                                
                                                
Google Scholar
                                                                                  18 
		                                		                             
Similar Articles
- Duke Ateyh Oeba, Cliff Orori Mosiori, Influence of Bulk Defect Density in CIGS on the Efficiency of Copper Indium Gallium Selenide Photocell , European Journal of Applied Physics: Vol. 6 No. 6 (2024)
 - Reginald B. Little, Relativistic Chiral Inversion of Non-Zero Nuclear Magnetic Moments During Centrifugal Industrial Fermentative Processes , European Journal of Applied Physics: Vol. 5 No. 6 (2023)
 - Bharat Khushalani, New Energy Sources for Space Propulsion: Pioneering Beyond Chemical Limits , European Journal of Applied Physics: Vol. 7 No. 4 (2025)
 - Donald C. Boone, Density Functional Theory Analysis that Explains the Volume Expansion in Prelithiated Silicon Nanowires , European Journal of Applied Physics: Vol. 6 No. 2 (2024)
 - Jiří Stavek, Towards Reconciliation and Collaboration: Bridging Low Energy Nuclear Reactions and Mainstream Nuclear Physics , European Journal of Applied Physics: Vol. 7 No. 2 (2025)
 - Reginald B. Little, Integrating Superconductivity in Cu Replace Lead Apatite by Nuclear Magnetic Moment Theory of RBL , European Journal of Applied Physics: Vol. 6 No. 3 (2024)
 - Ahlem Abidi, Entanglement of Coupled Harmonic Oscillators without and with Tunneling Effect and Correction Factor , European Journal of Applied Physics: Vol. 6 No. 5 (2024)
 - Rajendra S. Prajapati, Origin of Gravity and Reason for General Theory of Relativity Passing All the Tests , European Journal of Applied Physics: Vol. 7 No. 2 (2025)
 - Steven B. Krivit, Michael J. Ravnitzky, Review of Condensed-Matter Nucleosynthesis , European Journal of Applied Physics: Vol. 7 No. 5 (2025)
 - Jiří Stávek, The Rutherford-Harkins-Landau-Chadwick Key–VI. A Proposal for the Reproducible and Irrefutable Cold Fusion Reaction , European Journal of Applied Physics: Vol. 7 No. 2 (2025)
 
				
			1-10 of 103
		
					Next
			
		
		You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- 
													Naveen Weerasekera,
													Siyua Cao,
													Dawa Ram Shingdon,
						                        
Phase Field Modeling of Ghost Diffusion in Sn-Ag-Cu Solder Joints , European Journal of Applied Physics: Vol. 4 No. 2 (2022) - 
													Siyua Cao,
													Naveen Weerasekera,
													Dawa Ram Shingdan,
													Ahmed Ijaz Abdulla,
						                        
Understanding Precipitate Growth Kinetics at Ultra-High Hydrostatic Pressures , European Journal of Applied Physics: Vol. 4 No. 3 (2022) 
					
						




