University of Louisville, USA
* Corresponding author
Portland State University, USA
University of Colombo, Sri Lanka

Article Main Content

In this paper, utilization of density functional theory (DFT) to obtain mechanical, electrical and thermal properties of crystalline materials are reviewed. DFT has resulted as an efficient tool for predicting ground states of many body systems thus aiding in resolving dispersion spectrums of complex atomic arrangements where solution by traditional Schr dinger (SH) equation is infeasible. Great success has been reported by previous researchers on utilizing DFT for functional property predictions of crystalline solids.

References

  1. H. Ma, Y. Ma, and Z. Tian. Simple Theoretical Model for Thermal Conductivity of Crystalline Polymers. ACS Appl. Polym. Mater., Oct. 2019;1(10):2566–2570. doi: 10.1021/acsapm.9b00605.
     Google Scholar
  2. N. A. Mohd Radzuan, A. B. Sulong, and J. Sahari. A review of electrical conductivity models for conductive polymer composite. Int. J. Hydrog. Energy, Apr. 2017;42(14):9262–9273. doi: 10.1016/j.ijhydene.2016.03.045.
     Google Scholar
  3. F. Willems and C. Bonten. Prediction of the mechanical properties of long fiber reinforced thermoplastics. Mallorca, Spain, 2020, p. 020066. doi: 10.1063/5.0028790.
     Google Scholar
  4. P. E. Hopkins, M. Ding, and J. Poon. Contributions of electron and phonon transport to the thermal conductivity of GdFeCo and TbFeCo amorphous rare-earth transition-metal alloys. J. Appl. Phys., May 2012;111(10):103533, doi: 10.1063/1.4722231.
     Google Scholar
  5. Eisberg, Robert Martin. Quantum physics of atoms, molecules, solids, nuclei, and particles. Wiley, 1985.
     Google Scholar
  6. K. Pal, S. Anand, and U. V. Waghmare. Thermoelectric properties of materials with nontrivial electronic topology. J. Mater. Chem. C, 2015;3(46):12130–12139. doi: 10.1039/C5TC02344K.
     Google Scholar
  7. N. M. Harrison. An Introduction to Density Functional Theory, p. 26.
     Google Scholar
  8. E. Kiely, R. Zwane, R. Fox, A. M. Reilly, and S. Guerin. Density functional theory predictions of the mechanical properties of crystalline materials. CrystEngComm, 2021;23(34):5697–5710. doi: 10.1039/D1CE00453K.
     Google Scholar
  9. A. Fereidoon, M. Ghorbanzadeh Ahangari, M. D. Ganji, and M. Jahanshahi. Density functional theory investigation of the mechanical properties of single-walled carbon nanotubes. Comput. Mater. Sci., Feb. 2012;53(1):377–381. doi: 10.1016/j.commatsci.2011.08.007.
     Google Scholar
  10. S. Ajori. A density functional study on the mechanical properties of metal-free two dimensional polymer graphitic Carbon Nitride, Int.L. of Nano Dimensions, 2017;8(3), 234-240.
     Google Scholar
  11. M. X. Chen and R. Podloucky. Electronic thermal conductivity as derived by density functional theory. Phys. Rev. B, Jul. 2013;88(4):045134. doi: 10.1103/PhysRevB.88.045134.
     Google Scholar
  12. P. L. Silvestrelli, A. Alavi, and M. Parrinello. Electrical-conductivity calculation in ab initio simulations of metals:Application to liquid sodium. Phys. Rev. B, Jun. 1997;55(23):15515–15522. doi: 10.1103/PhysRevB.55.15515.
     Google Scholar
  13. J. Bardeen. Electrical Conductivity of Metals. J. Appl. Phys., 1940;11:25.
     Google Scholar
  14. J. I. Ranasinghe, L. Malakkal, E. Jossou, B. Szpunar, and J. A. Szpunar. Density functional theory study of the structural, mechanical and thermal conductivity of uranium dialuminide (UAl2). J. Nucl. Mater., Nov. 2020;540:152359. doi: 10.1016/j.jnucmat.2020.152359.
     Google Scholar
  15. K. A. Baseden and J. W. Tye. Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom. J. Chem. Educ., Dec. 2014;91(12):2116–2123. doi: 10.1021/ed5004788.
     Google Scholar
  16. P. Borlido, J. Doumont, F. Tran, M. A. L. Marques, and S. Botti. Validation of Pseudopotential Calculations for the Electronic Band Gap of Solids. J. Chem. Theory Comput., Jun. 2020;16(6):3620–3627. doi: 10.1021/acs.jctc.0c00214.
     Google Scholar
  17. G. Aulakh. An overview of density functional theory based codes used for ab initio calculations, p. 10.
     Google Scholar
  18. K. Burke, R. Car, and R. Gebauer. Density Functional Theory of the Electrical Conductivity of Molecular Devices. Phys. Rev. Lett., Apr. 2005;94(14):146803. doi: 10.1103/PhysRevLett.94.146803.
     Google Scholar


Similar Articles

1-10 of 103

You may also start an advanced similarity search for this article.