Measurements of the Planck Length from a Ball Clock without Knowledge of Newton’s Gravitational Constant G or the Planck Constant
##plugins.themes.bootstrap3.article.main##
We demonstrate how one can extract the Planck length from ball with a built-in stopwatch without knowledge of the Newtonian gravitational constant or the Planck constant. This could be of great importance since until recently it has been assumed the Planck length not can be found without knowledge of Newton’s gravitational constant. This method of measuring the Planck length should also be of great interest to not only physics researchers but also to physics teachers and students as it conveniently demonstrates that the Plank length is directly linked to gravitational phenomena, not only theoretically, but practically. To demonstrate that this is more than a theory we report 100 measurements of the Planck length using this simple approach. We will claim that, despite the mathematical and experimental simplicity, our findings could be of great importance in better understanding the Planck scale, as our findings strongly support the idea that to detect gravity is to detect the effects from the Planck scale indirectly.
References
-
M. Planck. Natuerliche Masseinheiten. Der K¨oniglich Preussischen Akademie Der Wissenschaften, 1899.
Google Scholar
1
-
M. Planck. Vorlesungen ¨uber die Theorie der W¨armestrahlung. Leipzig: J.A. Barth, p. 163, see also the English translation “The Theory of Radiation” (1959) Dover, 1906.
Google Scholar
2
-
J. G. Stoney. On the physical units of nature. The Scientific Proceedings of the Royal Dublin Society, 3, 1883.
Google Scholar
3
-
A. Einstein. N¨aherungsweise integration der feldgleichungen der gravitation. Sitzungsberichte der K¨oniglich Preussischen Akademie der Wissenschaften Berlin, 1916.
Google Scholar
4
-
A. S. Eddington. Report On The Relativity Theory Of Gravitation. The Physical Society Of London, Fleetway Press, London, 1918.
Google Scholar
5
-
P. W. Bridgman. Dimensional Analysis. New Haven: Yale University Press, 1931.
Google Scholar
6
-
A. C. Mead. Possible Connection Between Gravitation and Fundamental Length Phys. Rev., 135(38), 1964. URL https://link.aps.org/doi/10.1103/PhysRev.135.B849.
Google Scholar
7
-
T. Padmanabhan. Planck length as the lower bound to all physical length scales. General Relativity and Gravitation, 17, 1985. URL https://doi.org/10.1007/BF00760244.
Google Scholar
8
-
S. Hossenfelder. Can we measure structures to a precision better than the Planck length? Classical and Quantum Gravity, 29, 2012. URL https://doi.org/10.1088/0264-9381/29/11/115011.
Google Scholar
9
-
S. Hossenfelder. Minimal length scale scenarios for quantum gravity. Living Reviews in Relativity, 16, 2013. URL https://doi.org/10.12942/lrr-2013-2.
Google Scholar
10
-
G. M. Obermair. Primordial Planck mass black holes (PPMBHS) as candidates for dark matter? Journal of Physics, Conference Series, 442, 2013. URL https://doi.org/10.1088/1742-6596/442/1/012066.
Google Scholar
11
-
V. Faraoni. Three new roads to the Planck scale. American Journal of Physics, 85, 2017. URL https://aapt.scitation.org/doi/pdf/10.1119/1.4994804.
Google Scholar
12
-
A. Unzicker. The Mathematical Reality: Why Space and Time Are an Illusion. Independently published, 2020.
Google Scholar
13
-
E. G. Haug. Can the Planck length be found independent of big G ? Applied Physics Research, 9(6):58, 2017. URL https://doi.org/10.5539/apr.v9n6p58.
Google Scholar
14
-
E. G. Haug. Finding the Planck length multiplied by the speed of light without any knowledge of G, c, or h, using a Newton force spring. Journal Physics Communication, 4:075001, 2020. URL https://doi.org/10.1088/2399-6528/ab9dd7.
Google Scholar
15
-
E. G. Haug. Using a grandfather pendulum clock to measure the world’s shortest time interval, the Planck time (with zero knowledge of G). Journal of Applied Mathematics and Physics, 9:1076, 2021c.
Google Scholar
16
-
A. H. Compton. A quantum theory of the scattering of xrays by light elements. Physical Review, 21(5):483, 1923. URL https://doi.org/10.1103/PhysRev.21.483.
Google Scholar
17
-
G. Gr¨aff, H. Kalinowsky, and J. Traut. A direct determination of the proton electron mass ratio. Zeitschrift f¨ur Physik A Atoms and Nuclei, 297 (1), 1980. URL https://link.springer.com/article/10.1007/BF01414243.
Google Scholar
18
-
R.S. Van-Dyck, F.L. Moore, D.L. Farnham, and P.B. Schwinberg. New measurement of the proton-electron mass ratio. International Journal of Mass Spectrometry and Ion Processes, 66(3), 1985. URL https://doi.org/10.1016/0168-1176(85)80006-9.
Google Scholar
19
-
L.S. Levitt. The proton Compton wavelength as the ‘quantum’ of length. Experientia, 14:233, 1958. URL https://doi.org/10.1007/BF02159173.
Google Scholar
20
-
O. L. Trinhammer and H. G. Bohr. On proton charge radius definition. EPL, 128:21001, 2019. URL https://doi: 10.1209/0295-5075/128/21001.
Google Scholar
21
-
E. Massam and G. Mana. Counting atoms. Nature Physics, 12:522, 2016. URL https://doi.org/10.1038/nphys3754.
Google Scholar
22
-
P. Becker and H. Bettin. The Avogadro constant: determining the number of atoms in a single-crystal 28Si sphere. Phil. Trans. R. Soc. A, 369: 3925, 2011. URL https://doi:10.1098/rsta.2011.0222.
Google Scholar
23
-
P. Becker. The new kilogram definition based on counting the atoms in a 28Si crystal. Contemporary Physics, 53:461, 2012. URL https://doi.org/10.1080/00107514.2012.746054.
Google Scholar
24
-
I Newton. Philosophiae Naturalis Principia Mathematica. London, 1686.
Google Scholar
25
-
H. Cavendish. Experiments to determine the density of the earth. Philosophical Transactions of the Royal Society of London, (part II), 88, 1798.
Google Scholar
26
-
Bartl, G. et. al. A new 28Si single crystal: Counting the atoms for the new kilogram definition. Metrologica, 54:693, 2017. URL https://doi.org/10.1088/1681-7575/aa7820.
Google Scholar
27
-
A. Cornu and J. B. Baille. D´etermination nouvelle de la constante de l’attraction et de la densit´e moyenne de la terre. C. R. Acad. Sci. Paris, 76, 1873.
Google Scholar
28
-
C. V. Boys. On the Newtonian constant of gravitation. Nature, 5, 1894. URL https://doi.org/10.1038/050330a0.
Google Scholar
29
-
R. Cross. Measuring the drag force on a falling ball. The Physics Teacher, 52(169), 2014. URL https://doi.org/10.1119/1.4865522.
Google Scholar
30
-
E. G. Haug. The gravitational constant and the Planck units. A simplification of the quantum realm. Physics Essays, 29(4):558, 2016. URL https://doi.org/10.4006/0836-1398-29.4.558.
Google Scholar
31
-
E. G. Haug. Collision space-time: Unified quantum gravity. Physics Essays, 33(1):46, 2020a. URL https://doi.org/10.4006/0836-1398-33.1.46.
Google Scholar
32
-
K. Cahill. Tetrads, broken symmetries, and the gravitational constant. Zeitschrift F¨ur Physik C Particles and Fields, 23:353, 1984.
Google Scholar
33
-
E. R. Cohen. Graviton Exchange and the Gravitational Constant in the book Gravitational Measurements, Metrology and Constants. Edited by Sabbata, V. and Gillies, G. T. and Melniko, V. N., Netherland, Kluwer
Google Scholar
34
-
Academic Publishers, 1987.
Google Scholar
35
-
M. E. McCulloch. Quantised inertia from relativity and the uncertainty principle. Europhysics Letters (EPL), 115(6):69001, 2016. URL https://doi.org/10.1209/0295-5075/115/69001.
Google Scholar
36
-
E. G. Haug. Newton and Einstein’s gravity in a new perspective for Planck masses and smaller sized objects. International Journal of Astronomy and Astrophysics, 8, 2018. URL https://doi.org/10.4236/ijaa.2018.81002.
Google Scholar
37
-
E. G. Haug. Demonstration that Newtonian gravity moves at the speed of light and not instantaneously (infinite speed) as thought! Journal of Physics Communication., 5(2):1, 2021. URL https://doi.org/10.1088/2399-6528/abe4c8.
Google Scholar
38
-
E. G. Haug. Quantum Gravity Hidden in Newton Gravity And How To Unify It With Quantum Mechanics. in the book: The Origin of Gravity from the First Principles, Editor Volodymyr Krasnoholovets,
Google Scholar
39
-
NOVA Publishing, New York, 2021b.
Google Scholar
40
-
M. J. Duff, L. B. Okun, and G. Veneziano. Trialogue on the number of fundamental constants. Journal of High Energy Physics, 2002, 2002. URL https://doi.org/10.1088/1126-6708/2002/03/023.
Google Scholar
41
-
J. Conlon. Why String Theory? CRC Press, 2015.
Google Scholar
42
Most read articles by the same author(s)
-
Espen Gaarder Haug,
Planck Speed: the Missing Speed of Physics? Absolute Still Without Breaking Lorentz Symmetry! , European Journal of Applied Physics: Vol. 4 No. 1 (2022) -
Espen Gaarder Haug,
Relativistic Compton Wavelength , European Journal of Applied Physics: Vol. 4 No. 4 (2022) -
Espen Gaarder Haug,
A Note on the Dimensionless Gravitational Coupling Constant Down to the Quantum Level , European Journal of Applied Physics: Vol. 5 No. 2 (2023) -
Espen Gaarder Haug,
Gravity Without Newton’s Gravitational Constant and No Knowledge of the Mass Size , European Journal of Applied Physics: Vol. 4 No. 6 (2022) -
Espen Gaarder Haug,
Eugene Terry Tatum,
A Newly-Derived Cosmological Redshift Formula Which Solves the Hubble Tension and Yet Maintains Consistency with Tt = T0(1 + z),theRh = ct Principle and the Stefan-Boltzmann Law , European Journal of Applied Physics: Vol. 7 No. 1 (2025)