Arbitrary Solution of the Schrödinger Equation Interacting with the Superposition of Hulthen with Spin-orbit Plus Adjusted Coulomb Potential Model
##plugins.themes.bootstrap3.article.main##
In this study, we solve the non-relativistic radial part of the Schrödinger wave equation for the superposition of the Hulthen with spin-orbit plus adjusted Coulomb potential (SHSC) potential using the Nikiforov-Uvarov (NU) method for arbitrary states. The Hulthen with spin-orbit plus adjusted Coulomb (SHSC) potential is the simplest potential field for a nuclear system and has been used to obtain the single particle energy spectrum for both nucleon species orbiting a closed nuclear core. We also obtained in this study the corresponding single particle normalized wave function expressed in terms of the Jacobi polynomial. Besides, we obtained two special cases of the energy spectra for the SHSC potential.
References
-
O. Bayrak, G. Kocak and I. Boztozun. Any l-state solution of the Hulthen potential by asymptotic iteration method. Journal of physics A: Mathematical and general, 2008: 11521-11529.
Google Scholar
1
-
H. Hassanabadi, B. Yazarlko, A. N. Ikot, N. Salahi and S. Zarrinkamr. Exact analytical solutions of Schrodinger equation for Hua plus modified Eckart potential. Indian journal of Physics, 2013; 87(12):1219-1223.
Google Scholar
2
-
S. H. Dong. Exact and proper quantization rules and langer modification wave equation in higher dimensions. Springer, Dordrecht, 2011.
Google Scholar
3
-
S. H. Dong. Factorization method in quantum mechanics, Springer, Dordrecht, 2007.
Google Scholar
4
-
A. Sinha, R. Roychoudbury and Y. P. Varshni. Shifted 1/N expansion for confined quantum systems. Canadian journal of physics, 2000; 78(2):141-152.
Google Scholar
5
-
E. S. William, E.P. Inyang, E. A. Thompson. Arbitrary l – solution of the Schrodinger equation interacting with Hulthen-Hellman potential model. Rev. Mex. Fis. 2020; 66(6):1-11.
Google Scholar
6
-
D. Agboola. Schrodinger equation with Hulthen potential plus Ring-shape potential. Communication in theoretical physics, 2011; 55(6):972-976.
Google Scholar
7
-
M. Alberg and L. Wilets. Exact solution to the Schrodinger equation for potential with Coulomb and Harmonic Oscillator terms. Physics letter A, Elsevier, 2001; 286:7-14.
Google Scholar
8
-
A. Niknam, A. A. Rajabi, and Solaimani. Solution of D-dimensional Schrödinger equation for Woods – Saxon potential with Spin-orbit, Coulomb and Centrifugal terms through a new Hybrid Numerical fitting Nikiforov-Uvarov Method. Journal of theoretical and applied physics. Springer, 2016; 10:53–59.
Google Scholar
9
-
L. Hulthe´n. U¨ ber die eigenlo¨sunger der Schro¨dinger-Gleichung des deuterons. Ark. Mat. Astron. Fys. A 28, 1942; 5.
Google Scholar
10
-
D. Agboola. The Hulthen Potential in D – dimensions. Physica Scripta 2009; 80, 065304:1–5.
Google Scholar
11
-
S. M. Ikhdair. Approximate Eigenvalues and Eigenfunction solutions for the Generalised Hulthen Potential with any Angular Momentum, Journal of mathematical chemistry, 2007; 42(3):461–471.
Google Scholar
12
-
C. O. Edet and P. O. Okoi. Any l State solution of the Schrödinger equation for q – Deformed Hulthen plus Generalized Inverse Quadratic Yukawa Potential in Arbitrary Dimensions. Revisita Mexicana de Fisica, 2019; 65:333-344.
Google Scholar
13
-
M. Mousavi and M. R. Shojaei. Calculation of Energy and Charge Radius for Doubly Magic Nuclei of 41Ca and 41Sc with Extra Nucleon. Chinese Journal of physics. Elsevier, 2016; 1–6.
Google Scholar
14
-
M. Mousavi, and M. R. Shojaei. Bound State Energy of Double Magic Number plus one Nuclei with Relativistic Mean Field Approach. Pramana Journal of Physics, 2017; 88(21):1–5.
Google Scholar
15
-
T. Otsuks, R, Fujimoto, Y. Utsuno et al. Magic numbers in Exotic Nuclei and spin-isospin properties of the NN interaction. Phys. Rev. let., 2001;87(8):1-4.
Google Scholar
16
-
D. Amos and I. Talmi. Nuclear shell model theory, Academic press Inc., New York, 1965.
Google Scholar
17
-
M. R. Pahlavani and S. A. Alavi. Solution of Woods-Saxon potential with spin-orbit and centrifugal terms through Nikiforov-Uvarov method. Comm. Theor. Phys., 2012; 58(5):739-743.
Google Scholar
18
-
A. F. Nikiforov and V.B. Uvarov. Special function of mathematical physics. Birkhauser, basel, 1988.
Google Scholar
19
-
R. L. Greene and C. Aldrich,Variational wave functions for a screened Coulomb potential. Phys. Rev. A., 1976;14:2363.
Google Scholar
20
-
S. H. Dong, W. C. Qiang, G. H. Suin and V. R. Bezerra. Analytical approximation to the l-wave solution of the Schrodinger equation with the Eckart potential. J. phys. A. 2007; 40:1-7.
Google Scholar
21
-
C. A. Ebomwonyi, M. C. Onate, M. C. Onyeaju and A. N. Ikot. Any l state solution of the Schrodinger equation interacting with Hellmann generalized Morse potential model. Kaibala Intl. J. Mod. Sc., 2017; 3:1-10.
Google Scholar
22
-
A. Tas, O. Aydogdu, and M. Sati. Relativistic spinless particle with position dependent mass: Bound state and Scattering phase shift. J. Korean Phys. Soci. 2017; 70:896-904.
Google Scholar
23
Most read articles by the same author(s)
-
E. P. Inyang,
E. P. Inyang,
I. O. Akpan,
J. E. Ntibi,
E. S. William,
Analytical Solutions of the Schrödinger Equation with Class of Yukawa Potential for a Quarkonium System Via Series Expansion Method , European Journal of Applied Physics: Vol. 2 No. 6 (2020) -
E. S. William,
J. A. Obu,
I. O. Akpan,
E. A. Thompson,
E. P. Inyang,
Analytical Investigation of the Single-Particle Energy Spectrum in Magic Nuclei of ⁵⁶Ni and ¹¹⁶Sn , European Journal of Applied Physics: Vol. 2 No. 6 (2020) -
I. P. Etim,
E. P. Inyang,
E. A. Thompson,
Digital Data Acquisition for Gamma-Ray Spectroscopy , European Journal of Applied Physics: Vol. 4 No. 1 (2022)