The Features of the Reference Frame Concomitant to the Cosmic Microwave Background
##plugins.themes.bootstrap3.article.main##
The features of reference frame, concomitant to the cosmic microwave background, immobile relatively cosmic microwave background, are considered. It is shown that the features of reference frame, concomitant to the cosmic microwave background (CMB), are determined by its properties. Any other object in the Universe and reference frame concomitant to it, is immersed in the CMB and moves relative to the reference frame concomitant to microwave background radiation. The zero pecular velocity of the reference frame concomitant to the microwave background radiation is analogous to the zero temperature on the Kelvin scale. Time in it is most rapid in relation to the time in any other reference frame, observable and measurable in any of them. The features of time, pecular speed, relative speed of two inertial RF, stellar aberration, and Doppler effect in the reference frame concomitant to the microwave background radiation are considered. According to the determined relative velocity of the two reference systems and the peculiar velocity of the reference system with the observer, the components of their relative velocity are determined. Determining the components of the relative velocity of the reference frames with determining the synchronous time for all points at any time in the reference frame concomitant to microwave background radiation, allows us to investigate the possibility of determining the speed of light "one way" and using it to navigate vehicles in distant space. Stability of angular location of heterogeneities of CMB in reference frame concomitant to CMB, allows us to use these heterogeneities for the increase of exactness of astronomic reference frames HCRF and ICRF.
References
-
A. Einstein, The principle of relativity and its implications in modern physics. (Transl.: Einstein A. Collection of scientific works Moscow, vol. 1, pp. 138-164, 1965).
Google Scholar
1
-
A. Michelson, Research on optics. Moscow: URSS, 2004, p. 200, pp. (34-40, 125–134).
Google Scholar
2
-
A. Michelson, F. Pease F. Pearson Repetition of the Michelson-Morley experiment, JOSA, vol. 18, no 3, pp.181-182, 1929.
Google Scholar
3
-
Masanori Sato. Single photon Michelson-Morley experiment via de Broglie-Bohm picture: An interpretation based on the hypothesis of frame dragging (2008) ArXiv: 0801.3138 [physics. gen-ph].
Google Scholar
4
-
J.A.S. Lima, F.D. Sasse, “Can Lorentz transformations be determined by the null Michelson-Morley result?”, 2017, Arxiv.org/abs/1709.06864.
Google Scholar
5
-
G. A. Lorentz, Proc. Acad. Sci. Amsterdam, 1904, 6, 809. Transl.: Electromagnetic phenomena in a system moving at any speed less than the speed of light. Lorentz G.A. Collection “The Principle of Relativity”, GTTI, 1934.
Google Scholar
6
-
H. Poincar´e, La Science et l’Hypoth´ese. Flammarion, Paris, 1902. Poincaré A. About science. Moscow: Nauka publ., 1990, p.734.
Google Scholar
7
-
A. Einstein, “Principe de relativit`e et ses cons`equences dans la physique moderne, ” Arch. sci. phys. Natur., ser. 4, pp. 5-28, 125-144, 1910. (Transl.: Einstein A. Collection of scientific works Moscow, 1965. vol. 1, pp. 138-164).
Google Scholar
8
-
A. Einstein, “Zur Elektrodynamik der bewegten Korper,” Annalen der Physik, vol. 17, pp. 891-921, 1905. (Transl.: Einstein A. Collection of scientific works. Moscow, 1965, vol. 1, pp. 7-35).
Google Scholar
9
-
A. Einstein, “Die Grundlage der allgemeinen Relanivitatstheorie, ” Ann. Phys., vol. 49, pp. 769-822, 1916. (Transl.: Einstein А. Collection of scientific works. Moscow, 1965. vol. 1, pp. 452- 504).
Google Scholar
10
-
A.D. Chernin, “How Gamov calculated the temperature of relict radiation, or a little about the art of theoretical physics,” UFN, vol. 164, pp. 889-896, 1994.
Google Scholar
11
-
E. Khrutskaya, M. Khovrichev, I. Izmailov, A. Berezhnoi, “The Pulkovo program for the study of stars with large proper motions,” GAO news, no. 219, Issue 4, pp. 355-360, 2009.
Google Scholar
12
-
D.P. Skulachev, “Correlation of the data on relic radiation anisotropy in the WMAP and Relict-1 experiments,” UFN, vol. 180, pp. 389-392, 2010.
Google Scholar
13
-
M.R. Nolta et al., “Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectra,” ApJS, vol. 180, pp. 296-317, 2009.
Google Scholar
14
-
Planck 2018 results. I. Overview and the Cosmological Legacy of Planck. Planck Collaboration, Astron. Astrophys. (2020), 641, A1.
Google Scholar
15
-
Planck 2018 results. Fossil radiation power spectra and probabilities. Planck Collaboration, Astron. Astrophys. (2020), 641, A6.
Google Scholar
16
-
A. Callinor, “Anisotropies in the Cosmic Microwave Backgrond,” arXiv: astro-ph /0403344,33p. of Physics, no. 3, vol. 4, pp. 71-77, 2017.
Google Scholar
17
-
V.A. Rubakov, A. D. Vlasov, “What do learn from the CMB observations?” arXiv: astro-ph/ 1008.1704, p. 27.
Google Scholar
18
-
J. B. Zeldovich “Hot" model of the universe,” UFN, vol. 89, p. 647-668, 1966.
Google Scholar
19
-
J.B. Zeldovich, I.D. Novikov, Structure and Evolution of the Universe. Moscow, 1975, p.736.
Google Scholar
20
-
A.D. Linde, “The Bloating Universe,” UFN, vol. 144, Issue 2A, pp. 177-214, 1984.
Google Scholar
21
-
V.G. Baryakhtar, Yu.L. Bolotin, A.V. Tur, V.V. Yanovsky. The Physical Fabric of the Universe. Kharkov: ISMA publ., 2010, p.512.
Google Scholar
22
-
W.I. Frankfurt, A.M. Frank, Optics of Moving Bodies. – Мoscow: Nаukа publ., pp. 76–112, 1972, (in Russian).
Google Scholar
23
-
B.N. Gimmelfarb, “To an Explanation of Stellar Aberration in the Theory of Relativity,” Uspechi Physicheskich Nauk, vol. 51, 1953.
Google Scholar
24
-
T.S. Landsberg, General Physics. Optic. – Мoscow: Nаukа publ., 1976, p.928 (in Russian).
Google Scholar
25
-
V.M. Svishsh, “Licht aberration in optical anisotropic single-axis (uniaxial) medium,” East European Journal, vol. 4, no. 3, 2017.
Google Scholar
26
-
A. Sommerfield, Vorlesungenuber Teoretische Physik. Rand 4. Optic von Arnold Sommerfeld. – Wisbaden, 1950, pp. 102-114.
Google Scholar
27
-
S. A. Tolchelnikova-Murri, “Stellar aberration and the observability of motions that cause it,” Geodesy and Cartography, 1997, no. 7.
Google Scholar
28
-
V. Svishch, “Aberration of Light from a Terrestrial Source,” Optics, vol. 7, no. 2, pp. 74-79, 2018. doi: 10.11648/j.optics.20180702.13.
Google Scholar
29
-
V.M. Svishch, “Speed Measurement in an Accompanying Reference system,” East European Journal of Physics, no.2, pp. 81-88, 2020.
Google Scholar
30
-
V.M. Svishch, “About the Informative Parameters of Michelson Interferometers with the Division of Amplitude and the Wave Front,” East European Journal of Physics, no. 3, vol. 5, pp. 24–31, 2018.
Google Scholar
31