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ABSTRACT

Low Energy Nuclear Reactions (LENR), often associated with the Submitted: April 04, 2025
controversial history of “cold fusion,” have persisted as a topic of scientific
interest for over three decades, despite limited acceptance in mainstream
nuclear physics. While the LENR community has documented anomalous
thermal effects and transmutation phenomena in metal-hydrogen systems,
these results remain underexplored by conventional nuclear theory and
experimental frameworks. This paper proposes a constructive path forward:
a call for interdisciplinary collaboration between LENR researchers and .
mainstream nuclear physicists. We examine how such cooperation could Corresponding Author:
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enhance the reproducibility, theoretical interpretation, and credibility of
LENR investigations, while simultaneously offering nuclear physics a
unique opportunity to revisit unexplained low-energy phenomena. Through
a synthesis of both communities’ strengths, we argue that a collaborative
scientific effort can lead to new insights, potential breakthroughs, and the
resolution of long-standing anomalies. The reality of nuclear reactions in
the original Fleischmann-Pons electrolytic cell can be newly interpreted if
we will analyze the joint contributions of all active nuclei contained in that
cell: in the PYREX glass, the used solution DO with 0.1 mol/l LiOD,
Pd/D cathode, Pt anode, brass resistance heater, thermistor temperature
probe, and the Kel F support plug. The simultaneous action of those nuclei
can create excess heat that cannot be explained by chemical reactions.
These “hidden” nuclear reactions effectively protected an acceptable
interpretation based on the standard nuclear physics.
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1. INTRODUCTION

Since the announcement by Fleischmann er al. [1] in 1989 of anomalous heat production in
electrochemical cells — interpreted as evidence of “cold fusion”-the field now known as Low Energy
Nuclear Reactions (LENR) has occupied a controversial space in modern science. While initial
enthusiasm gave way to widespread skepticism due to replication difficulties and theoretical ambi-
guities, e.g., [2], [3]; a dedicated community of researchers has continued to pursue the subject with
improved experimental techniques and a growing body of evidence suggesting real, though not yet fully
understood, phenomena, e.g., [4]-{24].

Meanwhile, the field of mainstream nuclear physics has made enormous strides in understanding
nuclear structure, reactions, and the fundamental forces governing atomic nuclei. It relies on well-
established protocols and robust theoretical frameworks derived from quantum mechanics and the
Standard Model. However, certain low-energy anomalies observed in condensed matter systems-such
as excess heat, unexpected isotopic shifts, and possible low-level neutron or radiation emissions —
remain insufficiently explained within the conventional nuclear paradigm.

This paper argues that the time is ripe for a re-evaluation of the divide between LENR and
conventional nuclear physics. Rather than persisting in parallel — and often isolated — tracks, these
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communities can mutually benefit from deeper collaboration. LENR researchers bring decades of
hands-on experimentation and observation of unique phenomena in metal-hydrogen systems. Nuclear
physicists bring sophisticated tools for modeling, measurement, and theoretical analysis. Together, they
can design more rigorous, controlled experiments; re-examine the fundamental assumptions about
nuclear reactions in condensed matter; and foster a new generation of scientific inquiry unconstrained
by disciplinary boundaries.

2. CHEMICAL COMPOSITION OF PARTS IN THE FLEISCHMANN-PONS CELL

The experimental cell used by Fleischmann et al. [4] in their calorimetric experiments was composed
from several parts asitis depicted in Fig. 1. A brief review of alternative calorimetric cells was published
by Storms [25].

Table I summarizes the chemical composition of these parts inserted into the Fleischmann-Pons
calorimetric cell. We assume that nuclear reactions among these nuclei might collectively contribute to
the observed excess heat.

3. BETA ELECTRONS AS THE TRIGGER OF NUCLEAR REACTIONS IN THE FPE

In October 1989, Teller [26] proposed a theoretical framework involving electron catalysis as
a potential explanation for the anomalous effects associated with cold fusion, specifically at the
femtometer scale. In his model, the interaction of electrons with nuclei could lead to the formation of
previously unrecognized neutral nuclear configurations capable of penetrating the Coulomb barrier
without the need for high kinetic energies. These configurations, potentially involving tightly bound
electron-nucleus systems, would allow for nuclear processes to occur under conditions far less energetic
than those required in conventional fusion reactions. Notably, Teller suggested that the electron
catalysts are not consumed in the course of these reactions; rather, they may be recycled, enabling
sustained nuclear activity with only a small number of catalytic electrons. This concept opens the
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Fig. 1. The Fleischmann-Pons calorimetric cell used in their experiments.

TABLE I: CHEMICAL COMPOSITION OF PARTS IN THE FLEISCHMANN-PONS CALORIMETRIC CELL

Chemical composition of parts in the Fleischmann-Pons electrolytic cell

PYREX glass cell
4.0% B, 54.0% O, 2.8% Na, 1.1% Al, 37.7% Si, 0.3% K

Solution in the cell
D,0 + 0.1 mol/l LiOD

Cathode: Pd/D
Anode: Pt

Brass resistance heater
e.g., 67% Cu and 33% Zn

Thermistor temperature probe
Composition not known

Kel F support plug (polychlorotrifluroethylene)
[-CF, — CFCI-],
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TABLE II: THE ELECTRON MULTIPLICATION FACTOR IN THE FLEISCHMANN-PONS EXPERIMENT

Electron multiplication factor k in the Fleischmann-Pons experiment Reference
k < 1 poisonous electron catalysis [21, [3]
1 < k < critical value-active electron catalysis [41H24]
k > critical value (“a substantial portion of the cathode fused — melting point 1544 °C, part of it vaporized, and [1]

the cell and contents, and part of the fume cupboard housing the experiment were destroyed”)

TABLE III: NUCLEI PRESENT IN THE FLEISCHMANN-PONS CELL THAT COULD TRIGGER NUCLEAR REACTIONS
27 1 28 41\ *
34+ gn — (1341)
Ban® — BSi+ et (np=225min) Q=413 MeV

OF +gn > (9F)”
(9F)" — XNe+ Yet (112 = 11.015) 0 =651 MeV

H+ Je—2n 0 = -2.50 MeV

possibility for a class of low-energy nuclear reactions in which electrons play an active, regenerative
role in mediating otherwise forbidden nuclear transitions.
We can introduce the electron multiplication factor k that describes these reactions:

catalytic electrons out

k = (1)

catalytic electrons in

Table 1T summarizes three different situations that were already observed during the Fleischmann-
Pons experiments.

Table 11 collects two cases when nuclei present in the Fleischmann-Pons calorimetric cell can capture
low energetic neutrons from the surroundings. These low energetic neutrons were observed by Jones
et al. [5]. In the following beta decay, energetic beta electrons might trigger nuclear reactions in
the Fleischmann-Pons cell. These beta electrons might react with deuterons under the formation of
dineutrons.

Stavek analyzed the historical papers of founding fathers of nuclear physics [27]-[29] and formulated
the Rutherford-Harkins-Landau-Chadwick Key [30]-35] based on inspirative papers of Rutherford
36], Harkins [37]-[39], Landau [40]-[42], and Chadwick [43].

In this century many nuclear physicists have been studying the properties of dineutron, trineutron
and tetraneutron, e.g., [44]-[62]. At this moment the structures of those neutral nuclei are not known.

4. NucLEI wiTH HIGH NEUTRON CAPTURE CROSS SECTIONS

The Pd/D system has to be activated using beta electrons in order to create dineutrons that might
freely travel throughout the Fleischmann-Pons cell. These dineutrons could be captured by nuclei with a
high neutron capture cross section. Tables IV and V summarize nuclei present in the Fleischmann-Pons
cell with a high neutron capture cross sections (data measured for the single neutron capture).

Miley et al. [63] analyzed in details properties of palladium nuclei in order to bring a better view
into the processes occurring in the Pd/D system. They found that one important property of palladium

TABLE IV: THE NATURAL ABUNDANCES AND CROSS SECTIONS FOR THE NEUTRON CAPTURE FOR PD ISOTOPES [59]

Isotope 102pq 04pq 105pq 106pq 108 pq 0pq
Atomic % 1.0 11.0 222 27.3 26.7 11.8

Barns metastable 5.0 ? 10.0 0.013 0.20 0.02

Barns stable-state ? 10.0 90.0 0.28 12.00 0.21

TABLE V: NucLEl wiTH HIGH NEUTRON CAPTURE CROSS SECTIONS PRESENT IN THE FLEISCHMANN-PONS CELL [61]

Interaction Energy T, Cross-section [barns] Q-value [MeV] Products
10B(n,a) Thermal 3840 2.792 Alpha, 7Li
Li(n,a) Thermal 940 4.78 Alpha, triton

105pg Thermal 90 15.12 107pg
3¢y Thermal 43.6 18.89 e
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TABLE VI: DINEUTRON CAPTURE BY ACTIVE NUCLEI IN THE FLEISCHMANN-PONS CALORIMETRIC CELL

9B +3n— (%B)" 0 = 14.82 MeV
("2B)" — 12C+ Qe t (11 =2020ms) Q=12.85 MeV
SLi+n— (3Li)" 0 =9.28 MeV
(L))" — (3Be)" + et (12 =838ms) Q=1549 MeV
(3Be)" — 23He (112 = 81as) 0 =0.09 MeV

10 Pd +%n — ' Pd 0=16.09 MeV
BCl+3n—{ici 0 =18.89 MeV

Calculated excess heat per one helium 4is43.75 MeV/ ‘Z‘He

Edmund Storm’s analysis [20] and [25] of 16 measurements by four independent studies

1.5 x 10" 3He/ (Ws) = (43 £ 12) MeV/4He

nuclei is their neutron capture cross section. The natural abundances of the Pd isotopes and their cross
sections for the neutron capture are listed in Table V.

Data given in Table 'V illustrate that the neutron capture is favored in Pd-105. Rolison and O’Grady
analyzed the Pd cathodes used in the experiment of Fleischmann, Pons and Hawkins and found
isotopic shifts of palladium nuclei [64]. They reported a diminution of palladium-105.

In the first step, the electron catalysts create dineutrons in the Pd/D system. In the second step these
dineutrons have to be captured by some nuclei with high neutron capture cross sections. After these
absorption reactions several transmutations and isotopic shifts occur and excess heat can be observed.
This idea was already experimentally studied by Miles and Imam in their Pd/D/Boron system [21]-
[24], where boron nuclei were inserted into the palladium cathode. In our model we assume that some
other nuclei in the surroundings of the palladium cathode might be participants in nuclear reactions.
Table V summarizes nuclei present in the FP cell with their neutron capture cross section with thermal
neutrons.

5. TRANSMUTATIONS AND ISOTOPIC SHIFTS OF NUCLEI AFTER THE DINEUTRON CAPTURE

Nuclei with high neutron capture cross sections, present in the surroundings of the palladium
cathode, undergo several nuclear reactions and release excess heat observed in the Fleischmann-Pons
calorimetric cell. Table VI summarizes nuclear events of these active nuclei based on the experimental
data of nuclear physics.

Storms [20] and [25] analyzed 16 measurements by four independent studies where the amount of
helium-4 was determined for observed excess heat produced by electrochemical cells containing D,O
and LiOD. The peak of his histogram gives the value (43 F 12) MeV/*He. The calculated excess heat
for the Fleischmann-Pons calorimetric cell based on the dineutron capture by active nuclei gives 43.75
MeV/*He.

| Betaemitter |
4

| Dineutron formation | <=

4

| Dineutron capture |

¥

[ Nuclear reactions ] =

3
[ Excessheat |

Fig. 2. The controlled Fleischmann-Pons experiment based on the controlled Teller’s electron catalysis.
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6. THE CONTROLLED FLEISCHMANN-PONS EXPERIMENT

The principle of the controlled Fleischmann-Pons experiment is shown in Fig. 2 During the
induction period a convenient beta emitter emits beta electrons towards the Pd/D cathode. Dineutrons
have been formed inside of this Pd cathode and freely migrate into the surroundings of this central
source of dineutrons. Active nuclei with high neutron capture cross sections absorb these dineutrons
and according the rules of the standard nuclear physics nuclear reactions occur. The secondary beta
electrons continue in a sustained chain reaction. The combination of nuclear reactions proceeds, the
electron catalysts have been recycled. The beta electron concentration has to be controlled using a beta
absorber. This manipulation of the Fleischmann-Pons system avoids the possible supercritical state
with some undesired situations, e.g., [1], [65]-67].

7. CONCLUSION: TOWARDS A SHARED SCIENTIFIC HORIZON

The LENR field offers persistent anomalies that challenge existing paradigms, while mainstream
nuclear physics provides the rigor and tools necessary to evaluate such claims. Both communities stand
to benefit from collaboration, not confrontation. In the spirit of pioneers of nuclear science, we propose
a shared responsibility to follow the evidence, test our assumptions, and engage in honest scientific
enquiry.

The way forward lies in openness, humility, and a commitment to excellence. Whether LENR
phenomena lead to revolutionary technologies or simply refine our understanding of complex systems,
the journey will enrich nuclear science as a whole. Let us meet not in opposition, but at the frontier —
where questions are still open, and discovery still possible.

The stakes of this collaboration are high. If LENR phenomena can be fully understood and
harnessed, they may offer pathways to safe, distributed, and sustainable energy sources — goals aligned
with the broader mission of science to serve humanity.
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