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I. INTRODUCTION 

The Huygens principle describes wave propagation by 

treating every point of a wave front as a source of spherical 

wavelets that produce secondary waves [1]. However, the 

Huygens principle struggles to provide an adequate 

explanation for diffraction effects. This was eventually 

resolved by Miller in 1991, who replaced the spherical point 

sources with spatiotemporal dipoles [2]. 

Although, this solution is able to describe phenomena 

such as refraction, it is unable to explain why the last fringes 

on either side of the diffraction pattern spread out and lose 

their fragmental distributions. Furthermore, it fails to 

explain why the number of fringes on either side of the 

diffraction pattern a function of the slit width is, i.e., the 

number of fringes produced with a slit width of 0.01 mm 

that can be resolved with the naked eye. However, the 

number of fringes nearly doubles for a slit width of 0.05 

mm. With much larger slits, i.e., a width of 0.35 mm, the 

number of fringes exceeds 100. Fig. 1(a) and (b) show the 

diffraction patterns produced using an opaque single slit 

with a width of 0.05 mm and 0.35 mm, respectively 

(wavelength of 532 nm). 

Moreover, Huygens’s solution  cannot explain how the 

width of the diffraction pattern produced by a single slit 

decrease in response to  increasing the thickness of the 

barriers. 

 
Fig. 1. Diffraction patterns for an opaque single slit with a width of (a) 

0.05 and (b) 0.35 mm. 

 

In 1801, Young demonstrated  the wave behavior of light 

via  the double-slit experiment,  observing a diffraction 

pattern similar to the interference pattern of the water waves 

produced by two coherent vibrating sources on  the surface 

of the water [3], [4]. However, this does not  seem to be a 

good example because there are several forces acting 

between the molecules of the water and between the water 

and the barriers, including cohesive and adhesive forces,  

whereas there are no analogous forces between photons. 

Later, the concept of wave-particle duality was developed 

in quantum mechanics as  the particle model was unable to 

provide a unified description for the behavior of both 

photons and larger particles such as He atoms at thermal 

velocity in the double slit experiment.  As a result,  de 

Broglie asserted that particles must possess wave-like 

properties [5]. Reversing the argument, we may also 

envision photons as particles  when considering their 

detection, reaction, and traveling in free space. Therefore, 

photons (quanta of energy) can  be described as either 

particles or waves depending  on the experiment. 

Although the wave-particle concept could easily explain 

the diffraction caused by an opaque aperture, some 

arguments were raised by several researchers, including 
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Richard Feynman, who called it the only mystery of 

quantum mechanics [6]. 

There are several mathematical approximations for 

diffraction that predict the intensity of light including the 

Helmholtz–Kirchhoff integral theorem, which considers the 

solution for a homogenous wave at any point. If r is the 

length of the vector 𝑟 from the observation point p to any 

point at the aperture plane, s is the closed surface 

surrounding p, 𝑛⃗⃗ is the outward normal, k is the wave 

number equal to 2𝜋 𝜆⁄  and U(p) is the disturbance at point p, 

the Helmholtz-Kirchhoff theorem can be expressed as [7]: 
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Alternatively, by simplifying the Huygens-Fresnel 

principle at the point plying in the (x,y) plane at a distance z 

normal to the rectangular coordinates lying in the (x0,y0) 

plane, we can express the near-field Fresnel approximation: 

 
2 2 2 2

0 0 0 0( ) ( ) ( )
2 2

.0 0 0 0( , , ) ( , ,0)
k k kikz

i x y i x y i x x y y
z z z

e
U x y z e U x y e e dx dy

i z


+ + − +

−

=    

            (2) 

 

Furthermore, for the intensity of light in the far-field, we 

can use the Fraunhofer diffraction equation [8]: 
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where D is the distance of the observation point from the 

aperture and θ is the angle between the beam and the optical 

axis. Then, if w is the width of the rectangular aperture, we 

can write: 

 

sin( )w m =            (4) 

 

Finally, owing to certain inconsistencies of the Fresnel-

Kirchhoff diffraction integral, we are required to adopt the 

Rayleigh-Sommerfeld diffraction theory to obtain a more 

accurate mathematical solution [9]. The Rayleigh-

Sommerfeld diffraction formulae are used to analyze the 

propagation of light independently of the Fresnel or 

Fraunhofer approximations; instead, they use the angular 

spectrum and direct integration methods [10]. 

Aside from wave-particle duality, none of these 

mathematical solutions can explain why the central band of 

the far-field diffraction pattern is a minimum for diffraction 

by a transparent single slit, or why it becomes significantly 

narrower if the barriers are semitransparent as opposed to an 

opaque single slit [11]. 

Such examples require the pursuit of a better solution that 

can explain diffraction phenomena independent of the 

aperture material and, preferably, independent of the near- 

and far-field zones. 

 

 

II. ANALYTICAL METHOD 

Let us assume that the space inside the aperture is 

homogenous with a constant refractive index. In this case, 

the concept of wave-particle duality represents the best 

solution for calculating the intensity of light at any arbitrary 

observation point, which leads us to consider equations (1) 

and (2), or the Rayleigh–Sommerfeld diffraction formulae, 

although they are valid solely for the opaque barriers. 

Alternatively,  as  summing  that the space is 

inhomogeneous close to the surfaces of the obstacles, as 

well as the edges of the  aperture,  the  refractive index near 

these surfaces will be higher, and will reduce as the distance 

from the object is increased. 

Considering this assumption alongside Snell’s law and 

the plane wave aberrations for a diffraction cone produced 

by an opaque wedge (see Rubinowicz for details [12]), 

whereby the edge-diffracted rays satisfy Fermat’s principle, 

leads us to another perspective. The goal of this new concept 

is to produce a diffraction model that works independently 

of the aperture material and its transparency or reflectivity in 

both the near and far-fields. 

To achieve this, I performed diffraction experiments with 

opaque, transparent, and semitransparent apertures and 

compared the results with three-dimensional simulations. 

First, I photographed the diffraction pattern millimeter by 

millimeter along the optical axis from the plane of the 

aperture to the Fraunhofer zone and combined the images. 

All experiments were performed using an opaque single 

slit with a width of 0.35 mm because larger apertures extend 

the near-field zone and produce more fringes. Then, I 

stitched the images together to reconstruct the entire 

diffraction image and analyzed the ray paths using Autodesk 

Alias to produce a three-dimensional digital model of the 

diffraction pattern. 

 

III. TREATMENT OF DIFFRACTION PATHS 

Fig. 2 shows the diffraction pattern produced by a single 

slit width of 0.35 mm from Z=3 mm to Z=56 mm, where Z 

is the distance from the plane of the aperture along the 

direction normal to the aperture. 

As shown in Fig. 2, the definition of the near and far-

fields are not correct because point A, which is closer to the 

aperture compared to point B, exhibits a ray similar to the 

far-field, while point B exhibits near-field characteristics. 

Furthermore, calculating the light intensity within the 

triangle formed by the points M, Q, and P because the rays 

out of that triangle on either side are straight. 

 

 
Fig. 2. Image of the diffraction pattern in the near and far-fields 

produced by an opaque aperture with a width of 0.35 mm. 
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Although Fig. 2 appears similar to the intensity 

distribution of the Fresnel diffraction pattern [13], they are 

not the same. This difference can be seen by magnifying an 

image of a Fresnel diffraction pattern by a factor of 10 along 

the z-axis, as shown in Fig. 3(a). Here, the light rays 

emerging from the triangle MQP are curved, as shown by 

the black arrows. However, the paths in Fig. 2 are straight. 

 

 
Fig. 3 (a). Magnified image of Fresnel diffraction pattern showing ray 

path curvature (black arrows). (b) Near-field diffraction pattern 

modeled using the Rayleigh–Sommerfeld model. 

 

Next, I simulated the propagation of the near-field 

diffraction pattern based on the Rayleigh-Sommerfeld 

formulae using MATLAB [14]. Then, I magnified the 

resulting image non-proportionally by a factor of 10 along 

the z-axis. I rotated the image until one of the paths outside 

triangle MQP remained almost horizontal. Then, I magnified 

it again non-proportionally by a factor of 10 along this path. 

Fig. 3(b) shows the curvature analysis of the paths produced 

in MATLAB. As this figure shows, the paths are not straight 

and have different curvatures. 

Fig. 4 indicates that the lines lie on the diffraction paths. 

As this figure shows, the paths are straight from Z0 to any 

point in the far-field, and the distribution of paths at Z0 

resembles up-chirped functions. However, one path, 𝐴0𝐵0, 

does not follow this trend. To study this path, further 

experiments and analysis are required. Therefore, the other 

paths are considered first. 

 

 
Fig. 4. Distribution of the diffraction paths. 

 

It should be noted that angle α in Fig. 4 was measured as 

approximately 8.76 × 10−4° (∼3.15 arcseconds) for a 

wavelength of 532 nm and a single opaque slit with a width 

of 0.35 mm. This changed to 5.33 × 10−3° (∼19.188 

arcseconds) for a single slit with a width of 0.050 mm. As 

each path behaves independently of the others, the intensity 

of light along each path from Am, at the aperture plane, to 

Bm, at any distance from the aperture, stays equal. 

Geometrically, the area of every ray cross section from Z0 to 

any far-field point is equal, as shown in Fig. 5. 

 

 
Fig. 5. Diagram illustrating ray cross sections in the far-field. 

 

Conversely, from 𝐴0𝐵0 to 𝐴𝑗𝐵𝑗 , the ray intensity 

decreases. It should be noted that the points A0 to Aj at Z0 

were arranged on a plane to simplify the calculation. As 

mentioned before, at Z0, the frequency of the distribution 

points A0 to Aj varies along the x-axis with a geometric 

relationship over the distance from the edge of the aperture. 

Thus, they can be considered as up-chirped functions in two 

ways. First, by as summing that if Φ(x), the instantaneous 

frequency is a linear function with an initial frequency of 

Φ0, which results in the following time-dependent linear 

chirped function [15]: 
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Then the Fourier transform is given by: 
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This is a general form of the equation with a geometric 

relationship over time. Later, this equation needs to be 

adjusted to follow a geometric relationship over the 

distance. Furthermore, the geometric (α,β)-chirp of the 

planar set A is defined by Ak, which is the Cartesian product 

of the one-point set {𝑘−1/β} and the open interval (0, 𝑘α/β) 
[16]: 
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This enables the fractal zeta functions of the 

inhomogeneous refracted space to be described, with n>1 

near the surface of the barrier and n=1 when x approaches 

infinity if the medium is a vacuum. Here, s is a complex 

number with a sufficiently large real part, and ζ
A
(s) is the 

distance zeta function of A, where A is an arbitrary compact 

subset of the Euclidian space ℝ𝑁. k is the languidity 

exponent, and R(s) is the reminder term equal to the zeta 

function of A corresponding to the boundary of a distance 

set. 
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Furthermore, each fractal of the refracted space behaves 

as a refractive element in which the light can be considered 

via ray tracing. Because the refractive index of the last 

elements is nearly the same as the refractive index of the 

medium (n=1 for a vacuum), the outermost fringes of the 

diffraction pattern are washed out by each other and become 

stretched (see Fig. 6). As mentioned before, the Huygens 

principle is unable to describe this behavior. 

This set can be a complicated geometric imitation of the 

variables-chirped wave in three-dimensional Euclidean 

space, ℝ3. Fig. 4 displays the simplified form in ℝ2. 

The second assumption is that the fractal elements follow 

a nonlinear geometric (α,β)-chirp. 

The spatial variance of chirp is related to the map 

function and, if the map function uses log-polar coordinates, 

the chirp behaves exponentially [17]. This is equivalent to 

the distribution of points A0 to Aj along the x-axis on the 

aperture plane in Fig. 4. As this is similar to Fig. 6, it 

represents an exponential up-chirp due to the changing rate 

of 𝐴𝑚𝐴𝑚−1/𝐴𝑚+1𝐴𝑚. 

 

 
Fig. 6. Exponential up-chirp waveform. 

 

As shown in Fig. 6, the frequency of the sinusoidal signal 

of the up-chirp waveform increases with distance. 

Therefore, the signal frequency should be an exponential 

function of the distance, which can be expressed as: 

 

( )2 ( )( ) sin 1f xg x e= −           (9) 

 

where 𝑓(𝑥) is the geometrical function related to the 

dimensions and the shape of the aperture, and the coordinate 

is located at the aperture surface. 

Furthermore, if 𝑔(𝑥) is defined by Eq. (9), 𝐴0
′  to 𝐴𝑚

′  are 

minima at Z0, 𝐵0
′  to 𝐵𝑚

′  are minima at Z, and 𝐼(𝑥) is the 

distribution function of the light intensity in the far-field 

along the x-axis, then the total light intensity between two 

minima, at any arbitrary cross section, will be equal, as 

shown in Fig. 5. This is expressed by: 
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which predicts an extremely high intensity amplitude at Z0 

compared to any arbitrary observation point because of the 

extremely narrow bandwidth, as described by Eq. (11): 
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The experimental results indicate that the diffraction 

pattern can be revived even with a single arrival photon, if 

the exposure time is adequate. This concept can easily 

demonstrate how the arrival photons will follow the paths, 

which are depicted in Fig. 4, based on their arrival point 

with their specific refractive indices relevant to the fractal 

inhomogeneous space in the plane of the aperture and their 

own wavelengths. 

In addition, it should be noted that if we divide both sides 

of Eq. (4) by λ, then the left-hand side is analogous to Snell's 

law, where λ0 and θ0 refer to the last incident ray inside the 

aperture that exits into the inhomogeneous refracted space: 

 

0

0
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,   

m m

w w
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IV. PROPAGATION OF DIFFRACTED RAYS 

As mentioned before, diffraction experiments with 

opaque, transparent, and semitransparent aperture materials 

need to be performed to determine the structure of the path 

𝐴0𝐵0. Therefore, the rays 𝐴1𝐵1 to 𝐴𝑗𝐵𝑗 are considered 

initially. To simplify the analysis, only sixty rays (which can 

be termed refracted rays) corresponding to sixty fringes in 

the far-field (i.e., up to 𝐴60𝐵60) were considered. In 

addition, the following steps were implemented: 

1. The path 𝐴0𝐵0 on either side of the symmetrical 

diffraction model was initially ignored. 

2. The positions of points A0 to Aj at the aperture plane 

and the points B0 to Bj at the far-field plane were identified. 

3. Profiles of the light intensity relevant to 𝐴𝑚𝐵𝑚 based 

on Eq. (10) were drawn. 

4. These profiles were duplicated to provide a 

symmetrical model (see Fig. 7). 

5. To consider the paths in their entirety from Z0 to the 

observation screen in the far-field, it is necessary to scale 

down the model non-proportionally along the optical axis (z-

axis) because the width of the aperture is normally about a 

fragment of millimeter (i.e., a single slit with a width of 0.35 

mm in Fig. 2), whereas the length of paths 𝐴𝑚𝐵𝑚 relevant to 

the far-field are very long (here, it is 1 m). 

 

 
Fig. 7. Distribution of the refracted rays on either side of the 

diffraction pattern, excluding the rays  

that may produce the central band. 

 

Although the paraxial approximation, which is a small-

angle approximation to the optical axis, is used in Gaussian 

optics and ray tracing in geometric optics [18], [19], it is not 

necessary to apply it here because the relevant minima and 
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maxima at Am and Bm are connected. 

It is important to note that the length of 𝐴59𝐴60 was 

measured to be approximately 1100 nm for w=0.35 mm (see 

also Fig. 6).  

 

V. DEFINITION OF THE PATH 𝐴0𝐵0 

To complete Fig. 7, the diffraction pattern created by 

opaque and transparent barriers must be analyzed to 

determine the differences and similarities. 

The diffraction experiments with transparent and 

semitransparent apertures show that the main functional 

parameter is the refractive index contrast between the 

aperture and the medium. Fig. 8 shows the single-slit 

diffraction pattern created by a glass single slit with a width 

of 0.1 mm and thickness of 0.170 mm (n=1.515) at a 

distance of 8 m, which illustrates the absence of a 

constructive interference fringe coinciding with the optical 

axis. 

It should be noted that a narrow bright central band may 

appear in the far-field by changing the refractive index 

contrasts between the aperture and the medium, for 

example, in the experiment of a glass (n = 1.515, thickness 

=0.170 mm) single slit with a width of 0.1 mm at 20 °C 

inside aniseed essential oil (n = 1.5385) for a 635-nm laser, 

and also in the experiment with a glass (n = 1.515, thickness 

=0.192 mm) single slit with a width of 0.1 mm at 27 °C 

inside rapeseed oil (n = 1.4705) for a 532-nm laser [11]. 

 

 
Fig. 8. Illustration of the far-field single-slit diffraction pattern for a 

glass aperture. 

 

Fig. 9 shows the single-slit diffraction pattern created by a 

fused quartz aperture at a distance of 8 m, for which the 

transparency at the edges of the fused quartz slit is 

significantly less than that through the center of the barrier, 

where it exceeds 90%. In this experiment, a fused quartz 

single slit with a width of 100 µm and thickness of 0.17 mm 

is employed (n = 1.4658 (447.1 nm), 1.4607 (532 nm), 

1.4570 (632.8 nm), clear aperture (%): ≥90) [11]. 
 

 
Fig. 9. Illustration of the far-field single-slit diffraction pattern for a 

fused quartz aperture. 

 

Furthermore, Fig. 10 shows the single-slit diffraction 

pattern created by an opaque aperture (302 stainless steel 

with black oxide finish) at a distance of 8 m (for a slit width 

of 100 µm and thickness of 0.127 mm). 
 

 
Fig. 10. Illustration of the far-field single-slit diffraction pattern for an 

opaque aperture. 

 

Comparing Fig. 8, 9, and 10 demonstrates that the 

principal visual difference in the diffraction patterns occurs 

at the central ray corresponding to 𝐴0𝐵0, while the other 

fringes on either side of the diffraction pattern are similar. 

The experiments involving transparent and 

semitransparent barriers suggest that the central band of the 

diffraction pattern is produced by two kinds of rays: a 

refracted ray similar to those in Fig. 7 and its duplicate 

owing to the symmetry of the model. Subsequently, we may 

consider Fig. 8 from another perspective, as shown in Fig. 

11, in which it is clear that the numerical sum of the 

intensities of the refracted and reflected rays is shown in 

Fig. 8. 

 

 
Fig. 11. Central band of the far-field diffraction pattern for a glass 

aperture. 

 

This assumption arose when I turned a convex mirror 

(diameter: 25mm, focal length: -7.75mm) around the 

straight edge of a thin glass sheet (n = 1.515, thickness 

=0.192 mm) while considering the diffraction pattern. 

Similarly, Fig. 9 shows that, as illustrated in Fig. 12, the 

numerical sum of the intensities of the reflected and 

refracted rays and their symmetrical counterparts in the 

center of the diffraction pattern produce the central single 

narrow band. 

Therefore, this model can be used to evaluate the effects 

of aperture transparency and reflectivity. 

 

 
Fig. 12. Central band of the far-field diffraction pattern for a fused 

quartz aperture. 
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Finally, we can follow the same logic to examine the 

central band of the diffraction pattern produced by an 

opaque aperture, as shown in Fig. 13. In this case the 

maximum light intensity at the center of the diffraction 

pattern is the combination of the refracted and reflected rays 

with their symmetrical duplicates and is equal to their 

combined numerical sum. 
 

 
Fig. 13. Central band of the far-field diffraction pattern for an opaque 

aperture. 

 

VI. THREE-DIMENSIONAL DIFFRACTION MODEL 

To produce a three-dimensional diffraction model to 

predict the intensity of light in any arbitrary point in the xz-

plane, two generation curves and two rails for each profile 

of the refracted rays are required (see Fig. 5 and 7). As 

shown by Fig. 13, producing the profile of the reflected ray 

and the central refracted ray for the opaque barrier is easy 

because they overlay each other. It is important to note that 

for the transparent and semitransparent barriers, these two 

profiles should be generated separately. This is because the 

profiles are duplicated to make the model symmetrical only 

if it is relevant and, if not, i.e., when the laser beam is not 

perfectly perpendicular to the plane of the aperture, then 

each side of the model is considered separately. 

The rails of each profile can be defined by the connecting 

lines of the intensity minima, which correspond to 𝐴𝑚
′ 𝐵𝑚

′  in 

Fig. 6 and 7. 

The generation curves should respect the light intensity in 

the domain of 𝐴𝑚
′ 𝐴𝑚+1

′  at the aperture plane and 𝐵𝑚
′ 𝐵𝑚+1

′  at 

the far-field observation plane, as described in Eq. (10), and 

the equivalence of the ray cross sections. 

The far-field generation curves can be determined 

experimentally using a detector to scan the diffraction 

pattern at various distances from the aperture. Then, Eq. 

(10) can be used to define the corresponding intensity 

maximum from Z0 to Z at any arbitrary distance from the 

aperture. 

Fig. 14 shows the top view of the three-dimensional 

model based on the definition of one reflected ray and sixty 

refracted rays (plus an additional central refracted ray). In 

this model, the width of the aperture was set to 0.35 mm and 

the distance of the observation screen to the aperture was set 

to1 m. Therefore, it is necessary to scale down the model 

non-proportionally along the optical axis. 

As Fig. 14 shows, the three-dimensional model, in the top 

view, matches perfectly with the experimental result shown 

in Fig. 2. 

 

 
Fig. 14. Top view of the three-dimensional diffraction model scaled 

non-proportionally along the optical axis. 

 

Now, sections can be made at any arbitrary distance from 

the aperture to measure the intensity of light at any arbitrary 

point by calculating the sum of the amplitudes. From Fig. 

15, it can be seen that two generation curves exist at Z =1 m, 

each of which is the numerical sum of the reflected ray and 

the central refracted ray (for the opaque aperture). 

Furthermore, the amplitude of the intensity at A0 is much 

greater than the intensity at B0, in accordance with Eq. (11). 

 

 
Fig. 15. Orthographic view of the three-dimensional diffraction 

model. 

 

As Fig. 16 shows, the central band of the diffraction 

pattern is produced by four rays, a reflected and a refracted 

ray, and their duplicates. 

 

 
Fig. 16. The perspective view of the 3D digital model of diffraction 

 

Finally, the model is ready for sectioning. Fig. 17 shows 

four sections at 1-mm intervals from the aperture alongside 

the light intensity distribution at the aperture for each 

interval. 

The sections in the three-dimensional model appear 

similar to those at distances of 2 and 4 mm, and their 

numerical sum is similar to those sections at distances of 1 

and 4 mm from the aperture in Fig. 17. 
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Fig. 17. Sections of the three-dimensional diffraction model. 

 

It is clear that, for the different incident wavelengths for a 

similar aperture, the only model variable liable to change is 

the angle of the rays relevant to Snell’s law. Moreover, this 

concept provides the opportunity to model the diffraction 

patterns produced by apertures of any kind of material or 

shape in the same structure. The concept starts by indicating 

points 𝐴0
′  to 𝐴𝑚

′  on the plane of the aperture and points 𝐵0
′  to 

𝐵𝑚
′  on the plane in the far-field, and then, producing the 

profiles of the refracted and reflected rays. 

 

VII. CONCLUSION 

Through considering the cross sections of the three-

dimensional diffraction model it is demonstrated that the 

paths of photons and other larger particles adhere to 

Fermat’s principle and, furthermore, it can be deduced that 

the space near the surface of an object refracts light 

inhomogeneously,  in accordance with a variable refractive 

index described by an exponential up-chirp function. 

Therefore, the wave-particle duality of light and other larger 

particles is not responsible for diffraction. 

The diffraction pattern is a combination of refracted and 

reflected rays, with the central band resulting from the 

combination of reflected and refracted rays in a symmetrical 

system. 

Furthermore, the number of fringes on either side of the 

diffraction pattern is small for smaller apertures and large 

for larger apertures. In addition, the outermost regions of the 

diffraction patterns stretch because the last fractal elements 

of the inhomogeneous space in the aperture plane maintain a 

refractive index that is very close to the original refractive 

index. 

The properties of the aperture edges, including their 

transparency and reflectivity, as well as the thickness of the 

aperture, influence the appearance of the diffraction pattern. 

Finally, the accurate three-dimensional diffraction model 

based on this concept of space being refracted near the 

surface of an object and its inhomogeneous refractive index 

enables the diffractive behavior of all shapes of transparent 

and opaque apertures to be modeled independent of the near 

and far-field zones for symmetrical and asymmetrical 

patterns. 
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